103 research outputs found

    Applicability of Heavy Ion Beam Probing (HIBP) system for stellarator WEGA

    No full text
    The applicability of the HIBP for stellarator WEGA is described in this article. It is possible to use such diagnostics for local plasma parameters measurement. Calculations of probing Na + beam trajectories were done for WEGA magnetic configuration with B0 = 0.5 T. The trajectory optimization aiming for the maximal plasma observation was done for chosen entrance and exit port combination. The calculation showsthat HIBPallows getting radial profiles of plasma parameters. The detector line of equal entrance angle connects the central area and the edge of the plasma column for beam energy E =30-60 keV. The detector line of equal energy E = 40 keV allowsto obtain series of radial profiles during single shot by changing of the beam entrance angle with the scan of control voltage.У статті описана можливість застосування HIBP діагностики для стеларатора WEGA. Можливе застосування цієї діагностики для локального вимірювання параметрів плазми. Проведені розрахунки траєкторій пучка іонів натрію для магнітної конфігурації WEGA з Bo = 0.5 T. Проведено оптимізацію траєкторій з метою одержання максимально можливої області спостерігання плазми для даної комбінації вхідного та вихідного портів. Розрахунки показують можливість одержання радіальних профілів параметрів плазми за допомогою HIBP діагностики. Детекторна лінія для постійного кута входу торкается центральної області та периферії плазми при енергії пучка E =30-60 keV. Детекторна лінія для постійної енергії E = 40 keV дозволяє одержати серію радіальних профілів за один постріл при зміні вхідного кута за допомогою сканування пучка керуючою напругою.В статье описана возможность применения HIBP диагностики для стелларатора WEGA. Возможно применения этой диагностики для локальных измерений параметров плазмы. Проведены расчеты траекторий пучка ионов натрия для магнитной конфигурации WEGA с Bo = 0.5 T. Проведена оптимизация траекторий с целью получения максимально возможной области наблюдения плазмы при данной комбинации входного и выходного портов. Расчеты показывают возможность получения радиальных профилей параметров плазмы с помощью HIBP диагностики. Детекторная линия для постоянного угла входа касается центральной области и периферии плазмы при энергии пучка E =30-60 keV. Детекторная линия для постоянной энергии E = 40 keV позволяет получить серию радиальных профилей за один разряд при изменении входного угла с помощью сканирования пучка управляющим напряжением

    Study of poloidal structure of geodesic acoustic modes in the T-10 tokamak with heavy ion beam probing

    No full text
    The poloidal structure of geodesic acoustic modes (GAMs) was studied on the T-10 tokamak by heavy ion beam probing with multichannel energy analyzer. GAMs were mainly pronounced on the plasma electric potential. The poloidal phase shift between the potential oscillations was determined by the two-point correlation technique. It was shown that GAM potential oscillations have the poloidal mode number m=0 in the core plasma. This experimental result agrees with theoretical predictions.На токамаке T-10 с помощью пучка тяжелых ионов исследована полоидальная структура геодезических акустических мод (ГАМ), которые явно видны на потенциале плазмы. Фазовый сдвиг между колебаниями потенциала определялся методом двухточечной корреляции с помощью многоканального энергетического анализатора. Показано, что ГАМ на потенциале имеют полоидальное модовое число m=0. Этот экспериментальный результат согласуется с теоретическими предсказаниями.На токамаці T-10 за допомогою пучка важких іонів досліджена полоїдальна структура геодезичних акустичних мод (ГАМ), що явно видно на потенціалі плазми. Фазове зміщення між коливаннями потенціалу визначається методом двохточечної кореляції за допомогою багатоканального енергетичного аналізатора. Показано, що ГАМ на потенціалі мають полоїдальное модове число m=0. Цей експериментальний результат узгоджується з теоретичними передбаченнями

    Electric field study with HIBP in OH and ECRH plasmas on the T-10 tokamak

    No full text
    The plasma potential φ and radial electric field Er were studied on T-10 in a wide range of ohmic and ECRH regimes. At densities ne> 10¹⁹ m⁻³, the potential has negative sign over the whole plasma cross section. At lower densities, the outer zone with positive φ and Er is formed. The absolute value of potential at mid-radius grows with density up to ne ≈ 3×10¹⁹ m⁻³ and then saturates. In regimes with ECR heating, |φ| decreases owing to the density pump-out and the electron temperature increase. Measurements of Er are compared with numerical simulations with several codes including nonambipolar fluxes due to the toroidal field ripple. The change of radially averaged ¬Er with density and temperature qualitatively agrees with neoclassical expectations.Потенциал плазмы φ и радиальное электрическое поле Er исследовались на токамаке T-10 в широком диапазоне омических и ЭЦР-режимов. При плотностях ne> 10¹⁹ м⁻³ потенциал имеет положительный знак во всем сечении плазмы. При меньших плотностях во внешней зоне потенциал и Er меняют знак. Абсолютное значение потенциала на середине радиуса растет с плотностью вплоть до ne ≈ 3×10¹⁹ м⁻³, а затем насыщается. В режимах с ЭЦР-нагревом абсолютная величина |φ| уменьшается за счет откачки плотности и роста электронной температуры. Измерения Er сравнивались с численными расчетами по нескольким кодам, учитывающим неамбиполярные потоки за счет гофрировки тороидального поля. Изменение среднего поля ¬Er с плотностью и температурой не противоречит неоклассическим ожиданиям.Потенціал плазми φ та радіальне електричне поле Er було досліджено на токамаці Т-10 у широкому діапазоні омічних та ЕЦР-режимів. При щiльностях ne> 10¹⁹ м⁻³ потенцiал має позитивний знак в усьому перетинi плазми. При менших щiльностях у зовнiшнiй зонi потенціал та Er змiнюють знак. Абсолютне значення потенцiалу на серединi радіуса росте зi щiльністью майже до ne ≈ 3×10¹⁹ м⁻³, а потiм насичується. У режимах з ЕЦР-нагрiвом абсолютна величина |φ|зменшується за рахунок відкачки щiльностi та росту електронноï температури. Вимiрювання Er порiвнювалися з числовими розрахунками за декiлькома кодами, які враховують неамбіполярнi потоки за рахунок гофрировки тороïдального поля. Зміна середнього поля ¬Er з щiльнiстю та температурою не протирiчить неокласичним сподiванням

    Heavy ion beam probe design study for TCABR

    No full text
    The Heavy Ion Beam Probe (HIBP) diagnostic is known as a unique tool for the direct plasma electric potential measurements. It gives also information on plasma density, temperature and current profile. The method is based on the injection of single charged ion beam into the plasma and the registration of the double charged particles born due to collisions with the plasma electrons. The area of the ionization in plasma is the sample volume of the plasma potential measurements. The position and the size of the sample volume are determined by the calculation of the trajectories of the probing particles. Three schemes have been analysed: Cs⁺, Tl⁺ ion and neutral injection for TCABR parameters: B0 = 1.5 T, Ipl = 135 kA. The calculations show that ion probing allows getting radial profiles of TCABR plasma parameters with the injection angle fast scan system. In all cases of ion beam injection we must use a curved beam line for ion beam transportation from last steering plates towards upper port. The primary ion beam injector must be situated out of high magnetic field area and its length is about 1.5m. The energy range (less than 100 keV for Cs⁺, or Tl⁺) allows using compact and cheap ion gun equipmenСистема зондування плазми пучком важких іонів відома як унікальний інструмент для прямих вимірювань потенціалу плазми. Вона також дозволяє одержувати інформацію про густину плазми, температуру і профіль току. Метод заснований на інжекції пучка однозарядних іонів у плазму та реєстрації двозарядних часток, утворених у результаті зіткнень з електронами плазми. Область іонізації у плазмі визначає елементарний об’єм, у якому здійснюється вимірювання потенціалу плазми. Положення і розмір елементарного об’єму визначається за допомогою розрахунків траєкторій зондуючих часток. Проаналізовано три варіанти: інжекція іонів Cs⁺, Tl⁺ та нейтральних атомів для параметрів TCABR: B0 = 1.5 T, Ipl = 135 кA. Розрахунки показують можливість одержання профілів параметрів плазми TCABR за допомогою системи швидкого сканування по кутам інжекції іонного пучка. У всіх випадках інжекції іонного пучка необхідно застосування вигнутого іонопроводу для транспортування іонного пучка від вихідних відхиляючих пластин до порту токамака. Інжектор первинного іонного пучка повинен бути розташований поза областю сильного магнітного поля , а його довжина буде біля 1,5 м. Енергія іонного пучка (біля 100 кеВ для Cs⁺ або Tl⁺) дозволяє застосувати компактний и дешевий іонний інжектор.Система зондирования плазмы пучком тяжелых ионов известна как уникальный инструмент для прямых измерений потенциала плазмы. Она так же позволяет получать информацию о плотности плазмы, температуре и профиле тока. Метод основан на инжекции пучка однозарядных ионов в плазму и регистрации двухзарядных частиц, образующихся в результате столкновений с электронами плазмы. Область ионизации в плазме определяет элементарный объем, в котором происходит измерение потенциала плазмы. Положение и размер элементарного объема определяются с помощью расчета траекторий зондирующих частиц. Проанализировано три варианта: инжекция ионов Cs⁺, Tl⁺ и нейтральных атомов для параметров TCABR: B0 = 1.5 T, Ipl = 135 kA. Расчеты показывают возможность получения профилей параметров плазмы TCABR с помощью системы быстрого сканирования по углу инжекции ионного пучка. Во всех случаях инжекции ионного пучка необходимо использование изогнутого ионопровода для транспортировки ионного пучка от выходных отклоняющих пластин до порта токамака. Инжектор первичного ионного пучка должен быть расположен вне области сильного магнитного поля , а его длина составит около 1,5 м. Энергия ионного пучка (около 100 кэВ для Cs⁺ или Tl⁺) позволяет использовать компактный и дешевый ионный инжектор

    New capabilities of plasma potential and density measurements using a dual heavy ion beam probing (HIBP) diagnostic in the TJ-II stellarator

    No full text
    The unique capabilities of the dual HIBP system allow the investigation of multi-scale mechanisms to be expanded from the plasma edge to the plasma core in the TJ-II stellarator. Experiments with combined NBI and ECRH heating have shown direct experimental evidence of the influence of ECRH on turbulent mechanisms, increasing the level of fluctuation, on the amplitude of Long-Range-Correlations (LRC) as proxy of Zonal Flows (ZFs) for potential fluctuations but not for density and poloidal magnetic fluctuations and on neoclassical radial electric fields. Whereas ECRH influences the level of fluctuations in a wide range of plasma densities, ECRH induced reversal of the neoclassical radial electric field has been observed only in low-density plasmas. The TJ-II unique experimental capabilities would allow validation of nonlinear saturation of turbulence simulations (e.g. TEM), including quantitative assessments of discrepancies (e.g. level of fluctuations, correlation lengths and interplay with ZFs) between theoretical and experimental results.Уникальные возможности двойной системы ЗПТИ позволяют расширить исследование влияния мульти-масштабных механизмов удержания от границы до центра плазмы в стеллараторе TJ-II. Эксперименты с комбинированным нагревом нейтральным пучком и электронно-циклотронным резонансом (ЭЦР) показали прямое экспериментальное доказательство влияния ЭЦР на турбулентные механизмы, приводящие к увеличению уровня флуктуаций, амплитуды дальних корреляций (как показатель зональных течений) для колебаний потенциала, неоклассического радиального электрического поля, но не для колебаний плотности плазмы и полоидального магнитного поля. В то время как ЭЦР влияет на уровень флуктуаций в достаточно широком диапазоне плотностей плазмы, индуцированный ЭЦР-переворот неоклассического радиального электрического поля наблюдается только для плазмы с низкой плотностью. Уникальные экспериментальные возможности TJ-II позволили бы проверку численного моделирования нелинейного насыщения турбулентности (например, TEM), включая количественные оценки в расхождении (например, амплитуды колебаний, длины корреляции и их взаимодействие с зональными потоками) между теоретическими и экспериментальными результатами.Унікальні можливості подвійної системи ЗПВІ дозволяють розширити дослідження впливу багатомасштабних механізмів утримання з периферії до центру плазми в стелараторі TJ-II. Експерименти з комбінованим нагрівом нейтральним пучком і електронно-циклотронним резонансом (ЕЦР) показали пряме експериментальне підтвердження впливу ЕЦР на турбулентні механізми, що приводять до збільшення рівня флуктуацій, амплітуди далеких кореляцій (як показник зональних течій) для коливань потенціалу, неокласичного радіального електричного поля, але не для коливань густини плазми і полоідального магнітного поля. У той час як ЕЦР впливає на рівень флуктуацій в досить широкому діапазоні густини плазми, індукований ЕЦР-переворот неокласичного радіального електричного поля спостерігається тільки для плазми з низькою густиною. Унікальні експериментальні можливості TJ-II дозволили б перевірку чисельного моделювання нелінійного насичення турбулентності (наприклад, TEM), включаючи кількісні оцінки в розходженні (наприклад, амплітуди коливань, довжини кореляції і їх взаємодія з зональними потоками) між теоретичними і експериментальними результатами

    The first operation of the heavy ion beam probing diagnostic (HIBP) on the Uragan-2M torsatron

    No full text
    The Heavy Ion Beam Probing (HIBP) diagnostic system has been installed and operates now on the Uragan-2M torsatron for the first time in Ukraine. The cesium ion beam with energy range of 17…120 keV and ion current of 10…150 μA was used in the first experiments for tracing the probing beam through torsatron magnetic field (0.39…0.4 T). The secondary ion beam with intensity in the range of 30…100 nA was detected on the first deflecting plate of the secondary beam-line according to preliminary calculations by using 80 keV primary beam energy and 100 μA of primary ion current. The primary beam with energy range of 17…20 keV (Ibeam≈10 μA) was traced through torsatron magnetic field towards the analyzer detection plates.Впервые в Украине введена в строй система диагностики плазмы с помощью пучка тяжелых ионов на торсатроне Ураган-2М. В первых экспериментах по проведению зондирующего пучка через магнитное поле торсатрона (0,39…0,4 Тл) использовался первичный пучок ионов цезия с энергией 17…120 кэВ и током 10…150 мкА. В соответствии с ранее проведенными расчетами осуществлена регистрация двукратного ионизованного пучка ионов цезия на первую отклоняющую пластину вторичного ионопровода (ток 30…100 нА) при энергии первичного пучка 70…80 кэВ и токе 100 мкА. Осуществлено проведение первичного пучка с энергией 17…20 кэВ (ток 10 мкА) через магнитное поле торсатрона до детекторных пластин анализатора.Вперше в Україні введено в дію систему діагностики плазми за допомогою пучка важких іонів на торсатроні Ураган-2М. У перших експериментах з проведення зондувального пучка крізь магнітне поле торсатрона (0,39… 0,4 Т) застосовано первинний пучок іонів цезію з енергією 17…120 кеВ та струмом 10…150 мкА. Згідно з попередніми розрахунками проведено реєстрацію вторинного пучка на першу пластину, яка відхиляє іони у вторинному іонопроводі (струм 30…100 нА) а енергії первинного пучка 70…80 кеВ та струму іонів 100 мкА. Здійснено проведення первинного пучка з енергією 17…20 кеВ (струм 10 мкА) крізь магнітне поле торсатрона до детекторних пластин аналізатора

    Recent measurements of the electric potential profile and fluctuations in ECRH and NBI plasmas on TJ-II stellarator

    No full text
    Heavy Ion Beam Probe diagnostics is used in TJ-II stellarator to study directly the plasma electric potential with a good spatial (up to 1cm) and temporal (up to 2 µs ) resolution. Low density (ne = (0.3…0.5)×1019 m –3) ECRH plasma in TJ-II is characterized by positive plasma potential (ϕ(0) = +600…+ 400 V). At higher densities the minor area of the negative electric potential appears at the edge. This area increases with the density, finally makes potential fully negative. This tendency is affected by ECRH power and deposition area. The NBI plasmas are characterized by negative electric potential in the full plasma column from the center to the edge, (ϕ(0) = -300…-600 V). These results show the clear link between plasma potential, temperature, density and particle confinement.безконтактного вимірювання електричного потенціалу плазми з високою просторовою (до 1 см) та часовою (до 2 мкс) здатністю. Плазма з низькою щільністю (ne=(0.3…0.5)×1019м –3) в ЕЦР-режимі нагріву на TJ-II характеризується позитивним потенціалом (ϕ(0) = +600…+400 В). При більшій щільності невелика область з негативним потенціалом виникає на периферії. Ця область зростає із збільшенням щільності і, зрештою, потенціал стає повністю негативним. Така поведінка залежить від потужності ЕЦР-нагріву і області її вивільнення. Плазма під час нагріву нейтральним пучком характеризується негативним потенціалом всього плазмового шнура від центру до периферії (ϕ(0) = -300…-600 В). Ці результати показують чіткий зв'язок між потенціалом плазми, електронною температурою, щільністю та утриманням часток.Диагностика плазмы тяжелым пучком ионов используется на стеллараторе TJ-II для бесконтактного измерения электрического потенциала плазмы с высоким пространственным (до 1 см) и временным (до 2 мкс) разрешением. Плазма с низкой плотностью (ne = (0.3…0.5)×1019 м –3) при ЭЦР- нагреве в TJ-II характеризуется положительным потенциалом (ϕ(0) = +600…+400 В). При больших плотностях небольшая область с отрицательным потенциалом возникает на периферии. Эта область увеличивается с возрастанием плотности и, в конечном итоге, потенциал плазмы становится полностью отрицательным. Такое поведение зависит от мощности ЭЦР-нагрева и области высвобождения мощности. Плазма при нагреве нейтральным пучком характеризуется отрицательным потенциалом всего плазменного шнура от центра к периферии (ϕ(0) = -300…-600 V). Эти результаты показывают четкую связь между потенциалом плазмы, электронной температурой, плотностью и удержанием частиц

    Study of plasma potential, its fluctuations and turbulence rotation in the T-10 tokamak

    Get PDF
    Plasma potential, its oscillations and turbulence rotation were studied on T-10 in a wide range of ohmic and ECRH regimes. The potential has negative sign over the whole plasma cross section. Broadband turbulence tends to rotate with E×B drift velocity. Rotation and potential evolve together with plasma confinement. Frequency of potential oscillations in the range of geodesic acoustic modes does not change with radius that disagrees with theoretical predictions.Потенциал плазмы, его колебания и вращение исследовались на токамаке T-10 в широком диапазоне омических и ЭЦР-режимов. Потенциал – отрицательный по всему сечению плазмы. Вращение турбулентности соответствует вращению за счет (E×B)-дрейфа. Вращение и потенциал чувствительны к изменениям удержания. Частота колебаний потенциала в диапазоне геодезических акустических мод не меняется по радиусу, что не соответствует локальной теории ГАМ.Потенціал плазми, його коливання та обертання було досліджено на токамаці Т-10 у широкому діапазоні омічних та ЕЦР-режимів. Потенціал має негативну величину по всьому перетину плазми. Обертання турбуленції відповідає обертанню за рахунок (E×B)-дрейфу. Обертання і потенціал чутливі до зміни утримання. Частота коливань потенціалу у діапазоні геодезичних акустичних мод ні змінюється в залежності від радіусу, що не відповідає локальній теорії ГАМ

    HIBP results on the WEGA stellarator

    No full text
    The heavy ion beam probe (HIBP) is a non-perturbing diagnostic, which allows to determine the spatial distributions of the main plasma parameters such as plasma potential, density, electron temperature and poloidal magnetic field in magnetically confined fusion plasma devices. The heavy ion beam probe plasma diagnostic system has been installed and tested on the WEGA stellarator in Greifswald, Germany in 2006-2007. The HIBP on WEGA is planned to be used for the basic investigations of the plasma confinement in a different magnetic configurations. Also, power deposition region will be investigated in experiments with modulated gyrotron heating power. In this work, the first plasma potential and total secondary current profiles measurements results are presented in a comparison with Langmuir probes data.Діагностика зондування плазми за допомогою пучка важких іонів (ЗППВІ) – це діагностика, яка не впливає на параметри плазми, та дозволяє вимірювати просторовий розподіл головних параметрів, таких як потенціал плазми, густина, електронна температура та полоїдальне магнітне поле у пристроях з магнітним утриманням. Діагностика плазми пучком важких іонів була встановлена на стелараторі ВЕГА у м. Грайфсвальд, Німеччина, у 2006-2007р. ЗППВІ на стелараторі ВЕГА заплановано використовувати для дослідження процесів утримання плазми при різних магнітних конфігураціях. Також буде досліджена область поглинання ВЧ- потужності у експериментах з модульованою потужністю гіротрону. У цій роботі представлено перші вимірювання профілю потенціалу та повного струму вторинного пучка у порівнянні з даними, які були одержані від Ленгмюрівських зондів.Диагностика зондирования плазмы с помощью пучка тяжелых ионов (ЗППТИ) является диагностикой, которая не влияет на параметры плазмы и позволяет измерять пространственные распределения главных параметров, таких как потенциал плазмы, плотность, электронная температура и полоидальное магнитное поле в установках с магнитным удержанием. Диагностика плазмы пучком тяжелых ионов была установлена на стеллараторе ВЕГА в г. Грайфсвальде, Германия, в 2006-2007г. ЗППТИ на стеллараторе ВЕГА планируется использовать для исследования процессов удержания плазмы в различных магнитных конфигурациях. Также будет исследована область поглощения ВЧ- мощности в экспериментах с модулируемой мощностью гиротрона. В этой работе представлены первые измерения профилей потенциала и полного тока вторичного пучка в сравнении с данными, полученными от Ленгмюровских зондов

    A dual heavy ion beam probe diagnostic on the TJ-II stellarator

    Get PDF
    The aim of the report is to show the development of HIBP diagnostics on the TJ-II stellarator and, as a result, the expansion of the range of plasma parameters measurements. The first Heavy Ion Beam Probe (HIBP-1) diagnostic is being used on TJ-II stellarator since 2000. It has been shown significant progress in the measurements of plasma profiles and oscillations. The second HIBP-2 system was installed on TJ-II in 2012. Dual HIBP system, consisting of two identical HIBP-1 and HIBP-2 located ¼ torus apart, provides the measurement of the long-range correlations of plasma parameters in the full plasma column. Low noise high gain (10⁷ V/A) preamplifiers with 1 Hz bandwidth sampling is used. They allow to study broadband turbulence and quasi-coherent modes like geodesic acoustic modes, Alfven eigenmodes, suprathermal electron induced modes, etc. New capabilities of the dual HIBP diagnostic in plasma potential and density investigations were demonstrated on TJ-II stellarator in the measurements of the correlation between fluctuations in different poloidal and toroidal locations: on the same field line, on the same magnetic surface or on different magnetic surfaces at different points, separated toroidally and/or poloidally.На стелараторі TJ-II створена подвійна система зондування плазми пучком важких іонів (ЗППВІ). Система складається з двох ідентичних комплексів, розташованих на відстані ¼ тора. Перший діагностичний комплекс почав діяти в 2000 році. Другий комплекс був встановлений в 2012 році. Використання підсилювачів детекторних сигналів з низьким рівнем шуму (10⁷ В/A) з пропускною здатністю 1 МГц дозволяє вивчати широкосмугову турбулентність та квазікогерентні режими, такі як геодезичні акустичні моди; альфвенівські моди; супертермальні моди, які збурюються швидкими електронами, тощо. Нові можливості подвійної системи були продемонстровані при вимірюваннях далеких кореляцій між флуктуаціями в різних полоїдальних та тороїдальних місцях: на одній лінії магнітного поля, на одній або на різних магнітних поверхнях у різних точках, розташованих тороїдально та/або полоїдально.На стеллараторе TJ-II создана двойная система зондирования плазмы пучком тяжелых ионов (ЗППТИ). Система состоит из двух идентичных комплексов, расположенных на расстоянии ¼ тора. Первый диагностический комплекс начал действовать в 2000 году. Второй комплекс был установлен в 2012 году. Использование усилителей детекторных сигналов с низким уровнем шума (10⁷ В/A) и полосой пропускания 1 МГц позволяет изучать широкополосную урбулентность и квазикогерентные моды, такие как геодезические акустические моды; альфвеновские собственные моды; моды, индуцированные надтепловыми электронами и т.д. Новые возможности двойной системы были продемонстрированы при измерениях дальних корреляций между флуктуациями, измеренными в различных полоидальних и тороидальных положениях: на одной или на разных магнитных поверхностях, в различных точках, смещенных тороидально и/или полоидально
    corecore