5,615 research outputs found
Aeroelastic simulations of stores in weapon bays using Detached-Eddy simulation
Detached-Eddy Simulations of flows in weapon bays with a generic store at different positions in the cavity and with flexible fins are presented in this paper. Simulations were carried out to better understand the fluid–structure interactions of the unsteady, turbulent flow and the store. Mach and Reynolds numbers (based on the missile diameter) were 0.85 and 326.000 respectively. Spectral analysis showed few differences in the frequency content in the cavity between the store with rigid and flexible fins. However, a large effect of the store position was seen. When the store was placed inside the cavity, the noise reduction reached 7 dB close to the cavity ceiling. The closer the store to the carriage position, the more coherent and quieter was the cavity. To perform a more realistic simulation, a gap of 0.3% of the store diameter was introduced between the fin root and the body of the store. Store loads showed little differences between the rigid and flexible fins when the store was inside and outside the cavity. With the store at the shear layer, the flexible fins were seen to have a reduction in loads with large fluctuations in position about a mean. Fin-tip displacements of the store inside the cavity were of the range of 0.2% of the store diameter, and in the range of 1–2% of store diameter when at the shear layer
Design of elastoplastic strain operations of timber band saws to improve their durability
The article dwells upon the technique for increasing the fatigue life of band saw by the generation of a curved blade and inner compensating tension. Optimal strengthening operations have been defined which ensure the maximum fatigue life of band saws of different steel grades. The paper also outlines the structure of the machine for band saw setting-up procedures
Occurrence of Vibrio parahaemolyticus in marine prawns and environments
Qualitative studies on the microflora of slime and guts of prawns and of sea water off Nagapattinam showed the presence of Vibrio in the slime and sea water. They were further tested for Vibrio parahaemolyticus types and related bio-types. Evidence of its occurrence is given. This points to the need for further studies on the distribution of this organism in terms of public health significance
Inflation and non-minimal scalar-curvature coupling in gravity and supergravity
Inflationary slow-roll dynamics in Einstein gravity with a non-minimal
scalar-curvature coupling can be equivalent to that in the certain f(R) gravity
theory. We review the correspondence and extend it to N=1 supergravity. The
non-minimal coupling in supergravity is rewritten in terms of the standard
(`minimal') N=1 matter-coupled supergravity by using curved superspace. The
established equivalence between two different inflationary theories means the
same inflaton scalar potential, and does not imply the same post-inflationary
dynamics and reheating.Comment: 18 pages, no figures, LaTeX. minor changes, references added, the
version published in JCAP. arXiv admin note: substantial text overlap with
arXiv:1201.2239, arXiv:1011.024
On the Equivalence of Different Lax Pairs for the Kac-van Moerbeke Hierarchy
We give a simple algebraic proof that the two different Lax pairs for the
Kac-van Moerbeke hierarchy, constructed from Jacobi respectively
super-symmetric Dirac-type difference operators, give rise to the same
hierarchy of evolution equations. As a byproduct we obtain some new recursions
for computing these equations.Comment: 8 page
The multifrequency Siberian Radioheliograph
The 10-antenna prototype of the multifrequency Siberian radioheliograph is
described. The prototype consists of four parts: antennas with broadband
front-ends, analog back-ends, digital receivers and a correlator. The prototype
antennas are mounted on the outermost stations of the Siberian Solar Radio
Telescope (SSRT) array. A signal from each antenna is transmitted to a workroom
by an analog fiber optical link, laid in an underground tunnel. After mixing,
all signals are digitized and processed by digital receivers before the data
are transmitted to the correlator. The digital receivers and the correlator are
accessible by the LAN. The frequency range of the prototype is from 4 to 8 GHz.
Currently the frequency switching observing mode is used. The prototype data
include both circular polarizations at a number of frequencies given by a list.
This prototype is the first stage of the multifrequency Siberian
radioheliograph development. It is assumed that the radioheliograph will
consist of 96 antennas and will occupy stations of the West-East-South subarray
of the SSRT. The radioheliograph will be fully constructed in autumn of 2012.
We plan to reach the brightness temperature sensitivity about 100 K for the
snapshot image, a spatial resolution up to 13 arcseconds at 8 GHz and
polarization measurement accuracy about a few percent.
First results with the 10-antenna prototype are presented of observations of
solar microwave bursts. The prototype abilities to estimate source size and
locations at different frequencies are discussed
Chaos and flights in the atom-photon interaction in cavity QED
We study dynamics of the atom-photon interaction in cavity quantum
electrodynamics (QED), considering a cold two-level atom in a single-mode
high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three
coupled degrees of freedom: translational, internal atomic, and the field. The
system proves to have different types of motion including L\'{e}vy flights and
chaotic walkings of an atom in a cavity. It is shown that the translational
motion, related to the atom recoils, is governed by an equation of a parametric
nonlinear pendulum with a frequency modulated by the Rabi oscillations. This
type of dynamics is chaotic with some width of the stochastic layer that is
estimated analytically. The width is fairly small for realistic values of the
control parameters, the normalized detuning and atomic recoil
frequency . It is demonstrated how the atom-photon dynamics with a
given value of depends on the values of and initial
conditions. Two types of L\'{e}vy flights, one corresponding to the ballistic
motion of the atom and another one corresponding to small oscillations in a
potential well, are found. These flights influence statistical properties of
the atom-photon interaction such as distribution of Poincar\'{e} recurrences
and moments of the atom position . The simulation shows different regimes of
motion, from slightly abnormal diffusion with at to a superdiffusion with at that
corresponds to a superballistic motion of the atom with an acceleration. The
obtained results can be used to find new ways to manipulate atoms, to cool and
trap them by adjusting the detuning .Comment: 16 pages, 7 figures. To be published in Phys. Rev.
Exact Multiplicities in the Three-Anyon Spectrum
Using the symmetry properties of the three-anyon spectrum, we obtain exactly
the multiplicities of states with given energy and angular momentum. The
results are shown to be in agreement with the proper quantum mechanical and
semiclassical considerations, and the unexplained points are indicated.Comment: 16 pages plus 3 postscript figures, Kiev Institute for Theoretical
Physics preprint ITP-93-32
Order of Two-Dimensional Isotropic Dipolar Antiferromagnets
The question of the existence of order in two-dimensional isotropic dipolar
Heisenberg antiferromagnets is studied. It is shown that the dipolar
interaction leads to a gap in the spin-wave energy and a nonvanishing order
parameter. The resulting finite N\'eel-temperature is calculated for a square
lattice by means of linear spin-wave theory.Comment: 10 pages, REVTEX, 1 figure available upon request, TUM-CP-93-0
- …