12 research outputs found

    ПАРОДИЙНЫЙ ТЕКСТ НА УРОКЕ РУССКОГО ЯЗЫКА КАК ИНОСТРАННОГО

    Get PDF
    This article deals with the problem of using parody texts while teaching foreigners how to read. A methodology of working with the parody text of sport interview is presented in the article.В статье обосновывается возможность использования текстов пародий при обучении чтению в иностранной аудитории. В качестве примера приводится методика работы с текстом - пародией на спортивный репортаж

    Приемы обучения пониманию имплицитной информации в процессе обучения чтению

    Get PDF
    The article deals with problems of understanding of implicit meaning while reading fiction at the lessons of Russian as foreign, the article offers methods of teaching of understanding of implicit information on the example of reading parodical texts.В статье рассматриваются проблемы понимания имплицитного смысла при чтении художественных текстов на уроках русского языка как иностранного, предлагаются приемы обучения пониманию имплицитной информации на примере чтения пародийных текстов

    AGILE, Fermi, Swift, and GASP/WEBT multi-wavelength observations of the high-redshift blazar 4C +71.07 in outburst

    No full text
    Context. The flat-spectrum radio quasar 4C +71.07 is a high-redshift (z = 2.172), γ-loud blazar whose optical emission is dominated by thermal radiation from the accretion disc. Aims. 4C +71.07 has been detected in outburst twice by the AGILE γ-ray satellite during the period from the end of October to mid-November 2015, when it reached a γ-ray flux of the order of F(E > 100 MeV)=(1.2 ± 0.3)×10 photons cm s and F(E > 100 MeV)=(3.1 ± 0.6)×10 photons cm s, respectively, allowing us to investigate the properties of the jet and the emission region. Methods. We investigated its spectral energy distribution by means of almost-simultaneous observations covering the cm, mm, near-infrared, optical, ultraviolet, X-ray, and γ-ray energy bands obtained by the GASP-WEBT Consortium and the Swift, AGILE, and Fermi satellites. Results. The spectral energy distribution of the second γ-ray flare (whose energy coverage is more dense) can be modelled by means of a one-zone leptonic model, yielding a total jet power of about 4 × 10 erg s. Conclusions. During the most prominent γ-ray flaring period our model is consistent with a dissipation region within the broad-line region. Moreover, this class of high-redshift, flat-spectrum radio quasars with high-mass black holes might be good targets for future γ-ray satellites such as e-ASTROGAM. © ESO 2019.AGILE is an ASI space mission developed with programmatic support by INAF and INFN. We acknowledge partial support through the ASI grant no. I/028/12/0. SV and PR acknowledge contract ASI-INAF I/004/11/0 and INAF/IASF Palermo where most of the work was carried out. SV acknowledges financial contribution from the agreement ASI-INAF no. 2017-14-H.0. Part of this work is based on archival data, software, or online services provided by the ASI SPACE SCIENCE DATA CENTER (ASI-SSDC). SV and PR thank Leonardo Barzaghi and Sara Baitieri for useful discussions. The Osservatorio di Torino team acknowledges the financial contribution from the agreement ASI-INAF No. 2017-14-H.0 and from the contract PRIN-SKA-CTA-INAF 2016. OMK acknowledges financial support from the Shota Rustaveli National Science Foundation under contract FR/217950/16 and grants NSFC11733001, NSFCU1531245. IA acknowledges support from a Ramón y Cajal grant of the Ministerio de Economía y Compet-itividad (MINECO) of Spain. The research at the IAA–CSIC was supported in part by the MINECO through grants AYA2016–80889–P, AYA2013–40825–P, and AYA2010–14844, and by the regional government of Andalucía through grant P09–FQM–4784. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Calar Alto Observatory is jointly operated by the MPIA and the IAA-CSIC. This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grant DN 08-1/2016. The St. Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. AZT-24 observations are made within an agreement among the Pulkovo, Rome, and Teramo observatories. GD and OV gratefully acknowledge the observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory, Bulgaria Academy of Sciences, via bilateral joint research project “Observations of ICRF radio-sources visible in optical domain” (PI G. Damljanovic). This work is a part of Project No. 176011 (“Dynamics and kinematics of celestial bodies and systems”), No. 176004 (“Stellar physics”) and No. 176021 (“Visible and invisible matter in nearby galaxies: theory and observations”) supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia. The Maidanak Observatory team acknowledges support from Uzbekistan Academy of Sciences grants No. F2-FA-F027 and F.4-16.Peer Reviewe
    corecore