20 research outputs found

    Efficiency of free energy calculations of spin lattices by spectral quantum algorithms

    Full text link
    Quantum algorithms are well-suited to calculate estimates of the energy spectra for spin lattice systems. These algorithms are based on the efficient calculation of the discrete Fourier components of the density of states. The efficiency of these algorithms in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size.Comment: 9 pages, 4 figures; corrected typographical and minor mathematical error

    Montecarlo simulation of the role of defects as the melting mechanism

    Full text link
    We study in this paper the melting transition of a crystal of fcc structure with the Lennard-Jones potential, by using isobaric-isothermal Monte Carlo simulations. Local and collective updates are sequentially used to optimize the convergence. We show the important role played by defects in the melting mechanism in favor of modern melting theories.Comment: 6 page, 10 figures included. Corrected version to appear in Phys. Rev.

    Vibrational Properties of Nanoscale Materials: From Nanoparticles to Nanocrystalline Materials

    Full text link
    The vibrational density of states (VDOS) of nanoclusters and nanocrystalline materials are derived from molecular-dynamics simulations using empirical tight-binding potentials. The results show that the VDOS inside nanoclusters can be understood as that of the corresponding bulk system compressed by the capillary pressure. At the surface of the nanoparticles the VDOS exhibits a strong enhancement at low energies and shows structures similar to that found near flat crystalline surfaces. For the nanocrystalline materials an increased VDOS is found at high and low phonon energies, in agreement with experimental findings. The individual VDOS contributions from the grain centers, grain boundaries, and internal surfaces show that, in the nanocrystalline materials, the VDOS enhancements are mainly caused by the grain-boundary contributions and that surface atoms play only a minor role. Although capillary pressures are also present inside the grains of nanocrystalline materials, their effect on the VDOS is different than in the cluster case which is probably due to the inter-grain coupling of the modes via the grain-boundaries.Comment: 10 pages, 7 figures, accepted for publication in Phys. Rev.

    Molecular dynamics study of melting of a bcc metal-vanadium II : thermodynamic melting

    Full text link
    We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We studied the structural, transport and energetic properties of slabs made of 27 atomic layers with a free surface. We investigated premelting phenomena at the low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the temperature increases, the V(111) surface disorders first, then the V(100) surface, while the V(110) surface remains stable up to the melting temperature. Also, as the temperature increases, the disorder spreads from the surface layer into the bulk, establishing a thin quasiliquid film in the surface region. We conclude that the hierarchy of premelting phenomena is inversely proportional to the surface atomic density, being most pronounced for the V(111) surface which has the lowest surface density

    Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory

    Get PDF
    Inelastic neutron scattering measurements of individual phonon lifetimes and dispersion at 295 and 1200 K have been used to probe anharmonicity and thermal conductivity in UO2. They show that longitudinal optic phonon modes carry the largest amount of heat, in contrast to past simulations and that the total conductivity demonstrates a quantitative correspondence between microscopic and macroscopic phonon physics. We have further performed first-principles simulations for UO2 showing semiquantitative agreement with phonon lifetimes at 295 K, but larger anharmonicity than measured at 1200 K. \ua9 2013 American Physical Society.Peer reviewed: YesNRC publication: Ye

    The conundrum of relaxation volumes in first-principles calculations of charged defects in UO2

    No full text
    The defect relaxation volumes obtained from density-functional theory (DFT) calculations of charged vacancies and interstitials are much larger than their neutral counterparts, seemingly unphysically large. We focus on UO 2 as our primary material of interest, but also consider Si and GaAs to reveal the generality of our results. In this work, we investigate the possible reasons for this and revisit the methods that address the calculation of charged defects in periodic DFT. We probe the dependence of the proposed energy corrections to charged defect formation energies on relaxation volumes and find that corrections such as potential alignment remain ambiguous with regards to its contribution to the charged defect relaxation volume. We also investigate the volume for the net neutral defect reactions comprising individual charged defects, and find that the aggregate formation volumes have reasonable magnitudes. This work highlights the issue that, as is well-known for defect formation energies, the defect formation volumes depend on the choice of reservoir. We show that considering the change in volume of the electron reservoir in the formation reaction of the charged defects, analogous to how volumes of atoms are accounted for in defect formation volumes, can renormalize the formation volumes of charged defects such that they are comparable to neutral defects. This approach enables the description of the elastic properties of isolated charged defects within an overall neutral material
    corecore