205 research outputs found

    Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO). DOI: 10.1051/0004-6361/200811000Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims. We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods. We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.Peer reviewe

    Collective edge modes in fractional quantum Hall systems

    Full text link
    Over the past few years one of us (Murthy) in collaboration with R. Shankar has developed an extended Hamiltonian formalism capable of describing the ground state and low energy excitations in the fractional quantum Hall regime. The Hamiltonian, expressed in terms of Composite Fermion operators, incorporates all the nonperturbative features of the fractional Hall regime, so that conventional many-body approximations such as Hartree-Fock and time-dependent Hartree-Fock are applicable. We apply this formalism to develop a microscopic theory of the collective edge modes in fractional quantum Hall regime. We present the results for edge mode dispersions at principal filling factors ν=1/3,1/5\nu=1/3,1/5 and ν=2/5\nu=2/5 for systems with unreconstructed edges. The primary advantage of the method is that one works in the thermodynamic limit right from the beginning, thus avoiding the finite-size effects which ultimately limit exact diagonalization studies.Comment: 12 pages, 9 figures, See cond-mat/0303359 for related result

    The RHESSI Microflare Height Distribution

    Full text link
    We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6-10 keV count-rate when RHESSI's full sensitivity was available in order to find the smallest events (Christe et al., 2008). Between March 2002 and March 2007, a total of 25,006 events were found. Source locations were determined in the 4-10 keV, 10-15 keV, and 15-30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g(h) \propto exp(-h/{\lambda}) where {\lambda} = 6.1\pm0.3 Mm is the scale height. A power-law height distribution with a negative power-law index, {\gamma} = 3.1 \pm 0.1 is also consistent with the data. Interpreted as thermal loop top sources, these heights are compared to loops generated by a potential field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential field loop height distribution which may be a signature of the flare energization process

    Spin- and charge-density oscillations in spin chains and quantum wires

    Full text link
    We analyze the spin- and charge-density oscillations near impurities in spin chains and quantum wires. These so-called Friedel oscillations give detailed information about the impurity and also about the interactions in the system. The temperature dependence of these oscillations explicitly shows the renormalization of backscattering and conductivity, which we analyze for a number of different impurity models. We are also able to analyze screening effects in one dimension. The relation to the Kondo effect and experimental consequences are discussed.Comment: Final published version. 15 pages in revtex format including 22 epsf-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/density-osc.pd

    Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

    Full text link
    We use the density matrix renormalization group (DMRG) for transfer matrices to numerically calculate impurity corrections to thermodynamic properties. The method is applied to two impurity models in the spin-1/2 chain, namely a weak link in the chain and an external impurity spin. The numerical analysis confirms the field theory calculations and gives new results for the crossover behavior.Comment: 9 pages in revtex format including 5 embedded figures (using epsf). To appear in PRB. The latest version in PDF format can be found at http://fy.chalmers.se/~eggert/papers/DMRGimp.pd

    Staggered flux and stripes in doped antiferromagnets

    Full text link
    We have numerically investigated whether or not a mean-field theory of spin textures generate fictitious flux in the doped two dimensional tJt-J-model. First we consider the properties of uniform systems and then we extend the investigation to include models of striped phases where a fictitious flux is generated in the domain wall providing a possible source for lowering the kinetic energy of the holes. We have compared the energetics of uniform systems with stripes directed along the (10)- and (11)-directions of the lattice, finding that phase-separation generically turns out to be energetically favorable. In addition to the numerical calculations, we present topological arguments relating flux and staggered flux to geometric properties of the spin texture. The calculation is based on a projection of the electron operators of the tJt-J model into a spin texture with spinless fermions.Comment: RevTex, 19 pages including 20 figure

    Boundary contributions to specific heat and susceptibility in the spin-1/2 XXZ chain

    Full text link
    Exact low-temperature asymptotic behavior of boundary contribution to specific heat and susceptibility in the one-dimensional spin-1/2 XXZ model with exchange anisotropy 1/2 < \Delta \le 1 is analytically obtained using the Abelian bosonization method. The boundary spin susceptibility is divergent in the low-temperature limit. This singular behavior is caused by the first-order contribution of a bulk leading irrelevant operator to boundary free energy. The result is confirmed by numerical simulations of finite-size systems. The anomalous boundary contributions in the spin isotropic case are universal.Comment: 6 pages, 3 figures; corrected typo

    Optical Detection of a Single Nuclear Spin

    Full text link
    We propose a method to optically detect the spin state of a 31-P nucleus embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the 31-P neutral-donor ground state can be resolved via a direct frequency discrimination measurement of the 31-P bound exciton photoluminescence using single photon detectors. The measurement time is expected to be shorter than the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure

    RHESSI Results -- Time For a Rethink?

    Full text link
    Hard X-rays and gamma-rays are the most direct signatures of energetic electrons and ions in the sun's atmosphere which is optically thin at these energies and their radiation involves no coherent processes. Being collisional they are complementary to gyro-radiation in probing atmospheric density as opposed to magnetic field and the electrons are primarily 10--100 keV in energy, complementing the (>100 keV) electrons likely responsible for microwave bursts. The pioneering results of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) are raising the first new major questions concerning solar energetic particles in many years. Some highlights of these results are discussed -- primarily around RHESSI topics on which the authors have had direct research involvement -- particularly when they are raising the need for re-thinking of entrenched ideas. Results and issues are broadly divided into discoveries in the spatial, temporal and spectral domains, with the main emphasis on flare hard X-rays/fast electrons but touching also on gamma-rays/ions, non-flare emissions, and the relationship to radio bursts.Comment: Proceedings CESRA Workshop 2004: "The High Energy Solar Corona: Waves, Eruptions, Particles", Lecture Notes in Physics, 2006 (accepted
    corecore