1 research outputs found
Convexity in partial cubes: the hull number
We prove that the combinatorial optimization problem of determining the hull
number of a partial cube is NP-complete. This makes partial cubes the minimal
graph class for which NP-completeness of this problem is known and improves
some earlier results in the literature.
On the other hand we provide a polynomial-time algorithm to determine the
hull number of planar partial cube quadrangulations.
Instances of the hull number problem for partial cubes described include
poset dimension and hitting sets for interiors of curves in the plane.
To obtain the above results, we investigate convexity in partial cubes and
characterize these graphs in terms of their lattice of convex subgraphs,
improving a theorem of Handa. Furthermore we provide a topological
representation theorem for planar partial cubes, generalizing a result of
Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure