344 research outputs found

    Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes

    Get PDF
    AbstractTidal Energy Converter (TEC) arrays are expected to reduce tidal current speeds locally, thus impacting sediment processes, even when positioned above bedrock, as well as having potential impacts to nearby offshore sand banks. Furthermore, the tidal dissipation at potential TEC sites can produce high suspended sediment concentrations (turbidity maxima) which are important for biological productivity. Yet few impact assessments of potential TEC sites have looked closely at sediment dynamics beyond local scouring issues. It is therefore important to understand to what extent exploitation of the tidal energy resource will affect sedimentary processes, and the scale of this impact is here assessed in relation to natural variability. At one such site in the Irish Sea that is highly attractive for the deployment of TEC arrays, we collect measurements of sediment type and bathymetry, apply a high resolution unstructured morphodynamic model, and a spectral wave model in order to quantify natural variability due to tidal and wave conditions. We then simulate the impacts of tidal-stream energy extraction using the morphodynamic model. Our results suggest that the sedimentary impacts of ‘first generation’ TEC arrays (i.e. less than 50 MW), at this site, are within the bounds of natural variability and are, therefore, not considered detrimental to the local environment. Yet we highlight potential environmental issues and demonstrate how impact assessments at other sites could be investigated

    Resource assessment for future generations of tidal-stream energy arrays

    Get PDF
    AbstractTidal-stream energy devices currently require spring tide velocities (SV) in excess of 2.5 m/s and water depths in the range 25–50 m. The tidal-stream energy resource of the Irish Sea, a key strategic region for development, was analysed using a 3D hydrodynamic model assuming existing, and potential future technology. Three computational grid resolutions and two boundary forcing products were used within model configuration, each being extensively validated. A limited resource (annual mean of 4 TJ within a 90 km2 extent) was calculated assuming current turbine technology, with limited scope for long-term sustainability of the industry. Analysis revealed that the resource could increase seven fold if technology were developed to efficiently harvest tidal-streams 20% lower than currently required (SV > 2 m/s) and be deployed in any water depths greater than 25 m. Moreover, there is considerable misalignment between the flood and ebb current directions, which may reduce the practical resource. An average error within the assumption of rectilinear flow was calculated to be 20°, but this error reduced to ∼3° if lower velocity or deeper water sites were included. We found resource estimation is sensitive to hydrodynamic model resolution, and finer spatial resolution (<500 m) is required for regional-scale resource assessment when considering future tidal-stream energy strategies

    Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas

    Get PDF
    As devices move from full-scale prototype to commercial installations, it is important that developers have detailed knowledge of the tidal energy resource. Therefore, the spatial distribution of the tidal currents over the northwest European shelf seas has been examined to improve understanding of the tidal-stream energy resource. Using a three-dimensional hydrodynamic model (ROMS) at �1 km spatial resolution, and applying device characteristics of the Seagen-S turbine, we show that the ratio of the amplitudes of the M2 and S2 tidal currents can lead to significant variability in annual practical power generation � variability that is not accounted for when considering only the mean peak spring tidal velocities, as is generally the case in resource feasibility studies. In addition, we show that diurnal inequalities (governed by K1 and O1 tidal constituents) and tidal asymmetries (governed by the relationship between M2 and its compound tide M4) over the northwest European shelf seas can further affect power generation at potential high-energy sites. Based on these variabilities, the spatial distribution of the tidal-stream �capacity factor� has been calculated. We find that mean peak spring tidal velocities can under-estimate the resource by up to 25%, and that annual practical power generation can vary by �15% for regions experiencing similar mean peak spring tidal velocities, due to the influence of other tidal constituents. Therefore, even preliminary resource assessments should be based on annual average power density, rather than peak spring tidal velocity

    Effect of waves on the tidal energy resource at a planned tidal stream array

    Get PDF
    Wave�current interaction (WCI) processes can potentially alter tidal currents, and consequently affect the tidal stream resource at wave exposed sites. In this research, a high resolution coupled wave-tide model of a proposed tidal stream array has been developed. We investigated the effect of WCI processes on the tidal resource of the site for typical dominant wave scenarios of the region. We have implemented a simplified method to include the effect of waves on bottom friction. The results show that as a consequence of the combined effects of the wave radiation stresses and enhanced bottom friction, the tidal energy resource can be reduced by up to 20% and 15%, for extreme and mean winter wave scenarios, respectively. Whilst this study assessed the impact for a site relatively exposed to waves, the magnitude of this effect is variable depending on the wave climate of a region, and is expected to be different, particularly, in sites which are more exposed to waves. Such effects can be investigated in detail in future studies using a similar procedure to that presented here. It was also shown that the wind generated currents due to wind shear stress can alter the distribution of this effect

    Influence of storm surge on tidal range energy

    Get PDF
    The regular and predictable nature of the tide makes the generation of electricity with a tidal lagoon or barrage an attractive form of renewable energy, yet storm surges affect the total water-level. Here, we present the first assessment of the potential impact of storm surges on tidal-range power. Water-level data (2000–2012) at nine UK tide gauges, where tidal-range energy is suitable for development (e.g. Bristol Channel), was used to predict power. Storm surge affected annual resource estimates −5% to +3%, due to inter-annual variability, which is lower than other sources of uncertainty (e.g. lagoon design); therefore, annual resource estimation from astronomical tides alone appears sufficient. However, instantaneous power output was often significantly affected (Normalised Root Mean Squared Error: 3%–8%, Scatter Index: 15%–41%) and so a storm surge prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range generation. The storm surge influence to tidal-range power varied with the electricity generation strategy considered (flooding tide only, ebb-only or dual; both flood and ebb), but with some spatial and temporal variability. The flood-only strategy was most affected by storm surge, mostly likely because tide-surge interaction increases the chance of higher water-levels on the flooding tide

    Digital technology and governance in transition: The case of the British Library

    Get PDF
    Comment on the organizational consequences of the new information and communications technologies (ICTs) is pervaded by a powerful imagery of disaggregation and a tendency for ?virtual? forms of production to be seen as synonymous with the ?end? of bureaucracy. This paper questions the underlying assumptions of the ?virtual organization?, highlighting the historically enduring, diversified character of the bureaucratic form. The paper then presents case study findings on the web-based access to information resources now being provided by the British Library (BL). The case study evidence produces two main findings. First, radically decentralised virtual forms of service delivery are heavily dependent on new forms of capacity-building and information aggregation. Second, digital technology is embedded in an inherently contested and contradictory context of institutional change. Current developments in the management and control of digital rights are consistent with the commodification of the public sphere. However, the evidence also suggests that scholarly access to information resources is being significantly influenced by the ?information society? objectives of the BL and other institutional players within the network of UK research libraries

    Responsive behaviour of galvanic anodes in concrete and the basis for its utilisation

    Get PDF
    This article was published in the journal, Corrosion Science [© Elsevier]. The definitive version is available at: http://www.sciencedirect.com/science/article/pii/S0010938X11003441In this study, a unique concrete specimen was used to analyse the response of embedded sacrificial zinc and steel anodes to rainfall and fluctuations in temperature. Current from the zinc and steel anodes increased when the environment was aggressive, showing that the required protection current depends on the present level of corrosion risk. A basis for using the ‘responsive behaviour’ of galvanic anodes is provided by the protective effects of pit re-alkalisation and pH maintenance. By contrast, protection based on achieving adequate polarisation inhibits the use of responsive behaviour and galvanic anodes might only deliver adequate polarisation in aggressive environments
    • …
    corecore