11 research outputs found

    Multiscale modeling and simulation of nanotube-based torsional oscillators

    Get PDF
    In this paper, we propose the first numerical study of nanotube-based torsional oscillators via developing a new multiscale model. The edge-to-edge technique was employed in this multiscale method to couple the molecular model, i.e., nanotubes, and the continuum model, i.e., the metal paddle. Without losing accuracy, the metal paddle was treated as the rigid body in the continuum model. Torsional oscillators containing (10,0) nanotubes were mainly studied. We considered various initial angles of twist to depict linear/nonlinear characteristics of torsional oscillators. Furthermore, effects of vacancy defects and temperature on mechanisms of nanotube-based torsional oscillators were discussed

    Analysis of Lead in Soils Adjacent to an Interstate Highway in Tampa, Florida

    No full text
    In order to assess the amount and distribution of lead pollution in soils adjacent to a major interstate highway serving the city of Tampa, Florida, a total of 224 samples were collected from 32 transects perpendicular to the roadway. The lead content was measured using atomic absorption spectrophotometry. The highest levels of lead were found at distances of 81, 243, and 729 cm from the road. The results show that there is a weak negative correlation between soil lead and the distance from the roadside, as well as with traffic density. The weakness of the relationship is a result of confounding variables such as turbulence and other microclimatic factors, downslope movement of soils overtime, and human action such as construction and highway landscaping. Nevertheless, over one-third of the samples collected in the study area contain more than 500 μg g−1 lead, levels considered to be hazardous by the United States Centers for Disease Control and the Environmental Protection Agency

    1.6 Cosmic-ray detectors

    No full text
    corecore