6 research outputs found

    Small punch fatigue testing of a nickel superalloy

    Get PDF
    Miniaturised mechanical test approaches, specifically small punch testing, are now widely recognised as a means of obtaining useful mechanical properties to characterise the creep, tensile and fracture characteristics of numerous material systems from a range of industrial applications. Limited success has been found in replicating fatigue properties through the use of a small punch disc. This paper will discuss the ongoing research and progress in developing a novel small punch fatigue testing facility at the Institute of Structural Materials at Swansea University. Experiments have been performed on the nickel superalloy C263 at ambient room temperature, investigating three different alloy variants; two orientations produced through additive manufacturing and the cast equivalent. Fractographic analysis has been completed to interpret the complex damage mechanisms in the test method along with the differences in performance amongst the alloy variants

    High temperature mechanical deformation of an additive manufactured nickel based superalloy using small scale test methods

    Get PDF
    Nickel based superalloys have been utilised within numerous industrial sectors from power generation to chemical processing plants for over four decades as a result of their ability to retain mechanical properties at arduous temperatures alongside excellent oxidation and corrosion resistance. Within the aerospace industry, they have been primarily used within regions of the gas turbine engine where metal temperatures can often exceed 1000°C and high temperature deformation mechanics are prominent. Although typically manufactured using traditional wrought and casting methodologies, the aerospace industry has become increasingly interested in the use of Additive Layer Manufacturing (ALM) as a means of fabrication to take advantage of the numerous benefits that ALM has to offer. Detailed characterisation of the structural integrity of components processed via additive processes is a key requirement of the understanding. In this paper, the small punch creep (SPC) test has been applied to samples of a high gamma prime containing nickel-based superalloy manufactured using the laser powder bed fusion (LPBF) process. Several different builds are investigated and ranked, with ALM builds provided in different epitaxial orientations and with contrasting process parameters to help determine the optimal process parameters

    Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    Get PDF
    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the kSP method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results

    Application of the small punch test to evaluate the integrity of a cold spray titanium coating

    Get PDF
    Metal Cold Spray (MCS) is currently under evaluation for its suitability for aerospace applications. However, before this technology can be implemented into the jet engine, the mechanical performance and structural integrity of this novel process must be fully understood. Limited data is currently available to determine key materials properties given the discrete and transient nature of a MCS component. Furthermore, it is extremely challenging to produce uniaxial test coupons that are truly representative of the in-service geometry. As such, the small punch (SP) test offers an attractive alternative, since miniature disc SP specimens can be extracted from localised discrete locations. This paper will report the findings from an experimental collaborative programme of work currently being undertaken by Swansea University, Rolls-Royce Singapore and Nanyang Technological University Corp Lab to understand the contrasting modes of failure in a Ti-6Al-4V coating sprayed on to a Ti-6Al-4V substrate, which is expected to have properties akin to a forged variant. This will include a series of SP tests to assess the integrity and performance across the substrate, bond line and coating. Results will be supported by additional microstructural and fractographic investigations

    Evaluating the efficacy of alternative small scale test methodologies in deriving the mechanical properties of additive manufactured materials

    No full text
    With the continuous drive of the aerospace industry to implement additive manufactured (AM) components into the next generation of aero-engines, to benefit from the near net shape and weight saving potential that the technology has to offer, the requirement to understand their mechanical performance is also rising in parallel. This is further complicated by the highly localised and transient micro/macro structures that AM produced parts typically possess, raising a question mark over the suitability of more traditional mechanical test approaches where the bulk properties are heavily influenced by the presence of a single defect. As such, alternative experimental approaches, capable of establishing the properties of smaller more intricate structures and geometrically representative microstructures and cross sections, needs to be considered for process parameter down-selection. This paper will explore the suitability of several alternative mechanical test methodologies in characterising the mechanical behaviour of a nickel based superalloy, Inconel 718 (IN718), produced by laser powder bed fusion (LPBF), and establish which results correlate most favourably to those generated through more conventional means. For the first time, results will be presented from several mechanical test methodologies including small punch, shear punch, hardness, nano-indentation and profilometry based indentation plastometry experiments; a set of mechanical test approaches that have yet to be directly compared and discussed in a single study on an additively manufactured material. Findings will be supported by advanced microscopy in the form of field emission SEM and crystallographic texture maps produced through electron back-scattered diffraction
    corecore