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Abstract: Nickel based superalloys have been utilised within numerous industrial sectors from power generation 

to chemical processing plants for over four decades as a result of their ability to retain mechanical properties at 

arduous temperatures alongside excellent oxidation and corrosion resistance. Within the aerospace industry, they 

have been primarily used within regions of the gas turbine engine where metal temperatures can often exceed 

1000oC and high temperature deformation mechanics are prominent. Although typically manufactured using 

traditional wrought and casting methodologies, the aerospace industry has become increasingly interested in the 

use of Additive Layer Manufacturing (ALM) as a means of fabrication to take advantage of the numerous benefits 

that ALM has to offer. Detailed characterisation of the structural integrity of components processed via additive 

processes is a key requirement of the understanding. In this paper, the small punch creep (SPC) test has been 

applied to samples of a high gamma prime containing nickel-based superalloy manufactured using the laser powder 

bed fusion (LPBF) process. Several different builds are investigated and ranked, with ALM builds provided in 

different epitaxial orientations and with contrasting process parameters to help determine the optimal process 

parameters.  
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1. Introduction 

Nickel based superalloys display an impressive range of mechanical properties from high temperature strength 

and toughness to excellent oxidation/corrosion resistance. It is these physical and mechanical properties that have 

led to its incorporation within numerous industrial sectors, in particular the aerospace industry where nickel is 

utilised in up to 40% of the gas turbine engine, primarily in the latter region [1]. 

Nickel based superalloys comprise of two major phases, namely gamma (γ) and gamma prime (γ’) with 

additional secondary phases such as carbides and borides typically present. Although γ, a continuous matrix of face 

centered cubic (FCC) structured nickel, is the primary constituent in which additional phases reside, γ’ typically 

acts as the key strengthening phase. This occurs as a result of several mechanisms, the main of which being its 

ordered L12 crystal structure of alternating Ni and Al. Given their similarity in terms of stoichiometry, there is a 

significant degree of directional covalent bonding, giving rise to a strong degree of ‘chemical order’ [2]. In addition 

to this strengthening mechanism, γ’ precipitates can lead to a mechanism known as precipitation hardening, where 

hard intermetallic particles present within the disordered FCC matrix impede dislocation movement [3]. 

Despite the association of γ’ with strengthening and therefore, increased high temperature capabilities, there 

is a trade off in regards to fabricability and weldability. This occurs due to a phenomenon known as ductility dip 

cracking (DCC), where a drop in ductility is observed at intermediate temperatures. Given this, the development of 

manufacturing methodologies both pre and post fabrication that can alleviate defect forming mechanisms has 

become precedent. Although nickel superalloys have been traditionally fabricated using wrought and casting 

methodologies [4], the aerospace industry has become increasingly interested in the use of alternative manufacturing 

routes such as powder processing, giving the potential scope for more complex alloy design of alloys containing 

>44% γ’ content.   

Additive layer manufacture (ALM) is a novel near-net shape manufacturing technique that utilises high energy 

heat sources in order to fabricate 2D slices of computer aided design (CAD) data, layer by layer until a full 3D 

component is produced. Although the innovation for this technology occurred in the late 1980s with 

stereolithography, it was the medical industry that drove its major development throughout the 1990s and 2000s 
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with the fabrication of numerous functional medical devices [5]. Despite the various forms of additive 

manufacturing (AM) utilised within the aerospace industry today for both component repair and manufacture, direct 

layer deposition (DLD) processes such as laser powder bed fusion (LPBF) have become prominent. LPBF is a multi-

weld process that incorporates high-energy lasers in order to melt and fuse powders in a desired 3D geometry as 

illustrated in Figure 1. This leads to numerous advantageous characteristics and capabilities such as the formation 

of components with highly complex and intricate design geometries [6]. 

 

 
Figure 1. Schematic of LPBF and the Concept Laser M2 recoating system [6]. 

 

Regardless of the major advantages of AM in comparison to traditional cast and wrought processing, it has 

been observed that the frequent presence of material discontinuities needs to be considered, since questions arise 

regarding structural integrity. As a result of this, there has become an ever increasing importance in gauging a better 

understanding of how process parameters such as beam speed, power and hatch spacing influence the associated 

defect forming mechanisms. In addition to these parameters, alternative variables such as build orientation have also 

been shown to majorly influence mechanical properties as highlighted in numerous papers [7]. It has been 

hypothesised that a significant enhancement of mechanical properties can be seen when components have build 

orientations perpendicular to the loading axis. Previous work found that the individual influence of these parameters 

can be normalized and plotted onto a process map with diagonal isopleths indicating varying degrees of energy 

density [8]. It has been established that low energy densities are not substantial enough to melt the bulk of powder, 

leading to high frequencies of void formation. In contrast, higher energy densities are hypothesised to give rise to 

crack formation mechanisms such as ductility dip cracking (DDC), where a drop in ductility is noticed at 

intermediate temperatures [9]. 

In order to characterise builds which will exhibit evolving microstructures throughout, localised mechanical 

testing methodologies such as small punch testing (SPT) will prove useful. Originally developed within the nuclear 

industry in the early 1980s, SPT was utilised in order to obtain mechanical property data from small volumes of 

materials [10]. Given the cost saving implications associated with this alongside localised testing, numerous 

industrial sectors began to implement this methodology into their arsenal, leading to the resurgence of SPT during 

the late 1990s and early 2000s when it was successfully utilised to generate creep data [11]. Given the small volume 

of material required, the aerospace industry has begun to incorporate the use of SPT for the assessment and 

characterisation of advanced materials such as additively manufactured components, where traditional 

methodologies such as uniaxial testing may not be possible given design geometries [7]. 

In SPT, small cylindrical discs of 8-9.5mm diameter and 0.5mm +-0.005mm thickness are subjected to a load 

via a 2-2.5mm diameter hemi-spherical punch head or ball, either under constant displacement rate or constant load. 

The selection of which methodology is dependent on what mechanical data is desired. However, given the nature 

of nickel superalloy usage within the gas turbine engine, high temperature deformation mechanisms such as creep 

is prominent. As such, small punch creep (SPC) testing is conducted, where the indenter is imparted upon the 

specimen at a constant load. SPC testing is performed in a ‘dead-weight’ testing arrangement. The specimen is 

circumferentially clamped and restrained between the upper and lower die, otherwise referred to as ‘bulge’ testing. 

Within this setup, the upper die contains an aperture allowing the puncher to pass through and impose force upon 

the specimen. Upon plastic deformation which will be onset during primary creep, the specimen will pass and 
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emerge through the circular 4mm diameter aperture present within the lower die. Heating is then applied through 

the use of a standard three zone radiant furnace. However, given the high temperatures present, oxidation and 

corrosion can become prominent. Therefore, it is evident that these tests need to be performed in an inert 

environment such as argon.  

Utilising SPC testing as a means for mechanical characterisation, this paper will explore the influence of 

process parameters on the microstructural integrity of γ’ rich nickel superalloys. Furthermore, the adverse effect of 

various material discontinuities on mechanical properties will be compared and evaluated.  

 

2. Materials and Methodology  

2.1 High Gamma Prime Nickel Superalloys 

The alloys of particular interest in this work are polycrystalline high gamma prime nickel superalloys. 

Although originally intended for utilisiation within directionally solidified blade and vane castings given its 

exceptional resistance to grand boundary cracking, properties attributed with their coarse grain size [12]. Given its 

desired application, these alloys coarse grain structure acts as a means of creep enhancement given that grain 

boundaries are typically susceptible to high temperature creep deformation. This can be achieved through its 

chemical composition, with the addition of high concentrations of γ’ formers, specifically Al + Ti Given the high 

addition of Al and Ti, high gamma prime alloys contain 50-60% γ’ and as a result are sensitive to defect forming 

mechanisms in AM processing. Figures 2a and 2b showcase both the frequency and distribution of this phase within 

high volume fractions of γ’. The variation in γ’ sizing known as primary, secondary and tertiary γ’ can be seen in 

Figure 2a whilst the distribution of γ’, specifically along grain boundaries can be seen in Figure 2b. The presence 

of γ’ along grain boundaries aids a mechanism known as grain boundary pinning, preventing dislocation movement 

and giving rise to a strengthening effect at a cost for ductility. 

 
Figure 2. a) CM247LC’s high volume fraction of gamma prime (primary, secondary and tertiary), b) gamma 

prime formation and distribution along grain boundaries. 

Given the potential scope of high γ’ nickel superalloys, there has been on-going work regarding the fabrication 

of high gamma prime nickel superalloys and as to whether the selection of manufacturing parameters can alleviate 

the presence of material discontinuities to what is considered a tolerable level. It has been showcased that low energy 

densities lead to the formation of voids as seen in Figure 3a. It is hypothesised that this occurs as a result of a lack 

of powder consolidation and therefore lack of complete melting. Conversely, it has been displayed that high energy 

densities leads to the formation of crack development as seen in Figure 3b. As previously mentioned, this has been 

attributed to DCC, a phenomenon that occurs as a combination of two mechanisms. These include micro stressing 

as a result of incoherent grain boundary carbides interrupting stoichiometry alongside macro residual stresses 

induced through welding. 
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Figure 3. a) Large evidence of voids attributed to a lack of powder consolidation at low energy densities, b) high 

microcracking attributed to DCC witnessed at high energy densities [9]. 

 

As previously mentioned, the University of Sheffield developed the Normalised Process Parameters map over 

a range of alloying systems including nickel, titanium and steel alloys in order to illustrate the influence of combined 

parameters as depicted in Figure 4. It is worth noting that within this process map, high gamma prime nickel 

superalloys showxase an extremely limited process window, which is mainly accredited to its poor fabricability as 

discussed. Energy Density (E*), as indicated by the diagonal isopleths, is quantified through the following 

equations: 

 

E* =     
𝑞∗

𝑣∗𝑙∗
 = [

𝐴𝑞

2𝑣𝑙𝑟𝐵
] [

1

ρ𝐶𝑝(𝑇𝑚−𝑇0)
]                                      

1

ℎ∗
=   

𝑟𝐵 

ℎ
 

 

Where q* = normalized power, v* = normalized beam velocity, l* = layer height, a = surface absorptivity, q = 

power (W), v = beam velocity (ms-1), l = layer height (m), rB = beam radius (m), ρ = density (kgm-3), Cp = specific 

heat capacity (J Kg K-1), Tm = melting temperature (K), T0 = initial powder bed temperature (K), h* = normalised 

hatch spacing and h = hatch spacing (m). 

 

 
Figure 4. Normalised process parameters map with dimensionless beam power over beam velocity and layer 

height in comparison to normalized hatch spacing [13]. 

 

Given the limited window for processability, samples from the extremities of the window were additively 

manufactured and mechanically tested in order to gauge an understanding of energy density on mechanical 

properties. When considering the diagonal isopleths, as can be seen in Figure 4, the top right represents a high 

energy density with the bottom left being low. The labelling system for the specimens is explained below with the 

following example: 

90-DOE-3-2 Position 1 



SSTT2018         Swansea University 
 

Where 90 refers to the build orientation (90°), 3 refers to the parameter set (low energy density), 2 refers to the 

build number and position 1 refers to post processing conditions (1 HIPed, 2 as built). It is worth noting that for 

build orientation, samples were extracted from thin plates rather than rods as shown in Figure 5.  

 

 
Figure 5. 30 and 90° orientation build schematics. 

 

Post manufacturing processing such as heat treatments (HT) and hot isostatic pressing (HIPing) have been 

shown to have an adverse effect on both microstructure and discontinuities such as porosity and cracking [14]. Heat 

treatments, in particular can leave cracks and pores in the microstructure. However, when combined with HIPing 

the microstructure can internally heal cracking as shown below in Figures 6a and 6b. The extended heat treatment 

has also been shown to develop a coarser grain structure. This paper will compare several additively manufactured 

builds in as built and HIPed conditions in order to assess whether these processes aid mechanical performance. 

 

 
Figure 6. Additive Layer Manufactured nickel superalloys solidification cracks internally ‘healed’, a) before 

and b) after HIPing [14]. 

  

2.2 Small Punch Creep Testing 

Using a series of grinding papers, samples of 9.5mm diameter, 2.2mm thickness were reduced to 1mm 

thickness using a 60# paper. From here, the sample was ground down to 0.6mm using a 500# paper, and finally 

reduced to 0.500mm with tolerances of +- 0.005mm using a 1200# paper. The edges of the sample were also rounded 

and both sides equally ground down in order to ensure uniformity and prevent beveling. Multiple SPC tests were 

performed on a modified high temperature SPC frame developed at Swansea University as illustrated in Figure 7a. 

 

 
Figure 7. a) SPCT frame developed at Swansea University [15], b) SP disc diameters matching the European CoP 

specifications, c) lower and upper die clamping system [16]. 



SSTT2018         Swansea University 
 

 

The small cylindrical specimens, as shown in Figure 7, match the specifications set forth by the European 

Code of Practice for Small Punch Testing [17] and were circumferentially clamped within the threaded upper and 

lower die, with the top rod being aligned centrally to the disc from the above loading pan. Below the top rod, a 

ceramic indenter with a cylindrical head of 2mm diameter is utilised in order to deform the material under a total 

constant load of 150N. LVDTs located both underneath the loading pan and the underside of the disc measures and 

records the displacement/deflection that occurs during the test with the ‘dead-weight’ testing frame. All tests were 

performed at 950°C. 

Once ruptured, macroscopic images of the fractured specimens were taken. The discs were then mounted on a 

stub and stage using a carbon sticker and imaged using a scanning electron microscope (SEM), both from a macro 

and microstructural point of view. Fracture surfaces in particular were imaged at high magnifications in order to 

help gauge an understanding of the failure modes involved. 

 

3. Results & Discussion 

As previously mentioned, parameter selection is a vital staple within ALM which consequently influences 

microstructure and the presence, frequency and type of material discontinuities present. Mechanical property 

assessment utilising SPC testing was used in order to determine whether low, medium or high energy densities are 

optimal for creep performance. Figure 8 indicates that medium energy density (90-DOE, etc.) offers optimal 

performance with time to rupture being 21.5 hours as displayed in Table 2.  In addition to this, 90-DOE-1-1 (low) 

exhibits the highest displacement before rupture. This, alongside the highest minimum displacement rate achieved 

of all tests (0.045mm.hr-1) suggests that it behaves as the most ductile of the 3 samples. It is these mechanisms 

together with the minimal frequency of material abnormalities in 90-DOE-1-1 that has led to this variant’s superior 

resistance to creep deformation.  

The comparison of various types of abnormalities and their detriment to mechanical properties can also be 

observed in Figure 9. High energy samples containing various forms of microcracking such as solidification and 

ductility dip cracking (90-DOE-2-1) can be compared and contrasted with low energy samples containing frequent 

voidage and porosity (90-DOE-3-1). Such a comparison indicates the influence of energy density on mechanical 

performance. As can be seen in Table 1, low energy densities tend to have a far more detrimental effect on creep 

performance than high energy densities, 16.1 hours in comparison to 2.8 hours. The most plausible explanation for 

this would be the one previously alluded to in the Materials and Methodology section. 90-DOE-3-1, despite being 

located within the processing window, contains frequent porosity and voidage in comparison to its higher energy 

counterpart. This occurs as a result of the energy input per unit area not being sufficient enough to melt all the 

powder, leading to lack of powder consolidation. Subsequently, there is a deficit in performance as the presence of 

porosity and voidage act as both initiation sites and stress concentrations. On the other hand, 90-DOE-2-1 contains 

frequent microcracking which although do act as a detriment to mechanical properties as can be seen, is nowhere 

near as substantial. As previously mentioned, macro images were taken using an optical microscope, where Figures 

10a, b and c showcase the increasing severity of cracking and rupture.  

 

Table 1. Mechanical property data gathered from SPC testing for low, medium and high energy densities. 

Sample ID Load [N] Temperature [°C] 
Time to Rupture 

[hours] 

Minimum displacement rate 

[mm.hr-1] 

90-DOE-1-1 150 950 21.5 0.045 

90-DOE-2-1 150 950 16.1 0.041 

90-DOE-3-1 150 950 2.8 0.147 
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Figure 8. A direct contrast of parameter sets (low, medium and high energy densities) influence on creep 

performance. 

 

  
Figure 9. Back-scattered electron imaging of 90-DOE-3-1 (left) and 90-DOE-2-1 (right). 

 

 
Figure 10. Optimal microscopy of samples a) 90-DOE-1-1, b) 90-DOE-2-1, c) 90-DOE-3-1. 
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In addition to parameter selection, Figure 11 emphasises and highlights the range of scatter that can be seen in 

separate builds, despite the same parameter set being used. Table 2 indicates that this scatter is as much as 3-fold, 

with the minimum time to rupture being 21.5 hours seen in 90-DOE-1-1 and the maximum being 59.2 hours for 90-

DOE-1-3. Regardless of the same parameters and post manufacture processing utilised, the most plausible 

explanation for this would be down to the elastic heterogeneity of the microstructure. SPC testing utilises a small 

volume of material for its specimens, specifically 9.5mm diameter and 0.5mm thickness. As a result of this, the 

methodology is specifically sensitive in picking up these variations within localised regions of microstructure. 

Despite the similarity in columnar grain structures, Table 3 showcases the 90-DOE-1-1 sample picking up a higher 

volume of clustered fine columnar grains, giving rise to creep detrimental qualities giving the increased volume of 

grain boundaries. Conversely, 90-DOE-1-3s grains are indicated as being generally coarser. In addition to this, 

Figure 12 indicates that the 90-DOE-1-1’s specimen has picked up a higher occurrence of porosity, in larger sizes, 

which in some cases are located at grain boundaries. This is in direct contrast to 90-DOE-1-3, where the lower 

volumes of smaller porosity are located within the grains. Given the small volume of material and heterogeneity of 

the sample, specimens may pick up differing volumes of extremely detrimental material defects that could act as 

stress raisers, inhibiting creep resistance and as a result leading to high scatter in data. Table 2 supports this proposed 

mechanism as being a major influencer in the particularly high minimum displacement rate seen in 90-DOE-1-1 

suggesting that the porosity found has accelerated plastic deformation.   

 

Table 2. Mechanical property data gathered from SPCT for varying build numbers at 90°, parameter set 1. 

 

 
 

Figure 11. A comparison of the effect of build number on creep life for a 90o build parameter set 1. 

 

 

Sample ID Load [N] Temperature [°C] 
Time to Rupture 

[hours] 

Minimum Displacement Rate 

[mm.hr-1] 

90-DOE-1-1 150 950 21.5 0.045 

90-DOE-1-2 150 950 30.5 0.027 

90-DOE-1-3 150 950 59.2 0.019 

90-DOE-1-4 150 950 39.7 0.026 

90-DOE-1-5 150 950 46.0 0.020 

90-DOE-1-6 150 950 42.8 0.024 
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Table 3: Grain size measurements of 90-DOE-1-1 in comparison to 90-DOE-1-3. 

 

 

 

 

 

 
Figure 12. 90-DOE-1-1at low and high magnification (left), 90-DOE-1-3 at low and high magnification (right). 

 

Moreover, post rupture fractography as shown in Figure 13 highlights the distinctly different fracture surfaces 

and as a result, the contrasting failure mechanisms. 90-DOE-1-1’s fracture surface displays faceted features, 

suggesting that a brittle transgranular failure has taken place. This further supports its relatively high minimum 

displacement rate as brittle failures are known to be more instantaneous and as a result catastrophic.  

90-DOE-1-3s failure could not be distinguished as to whether it was intergranular or transgranular as a result 

of oxycarbide formation along the fracture surface. Given the improved lifetime of 90-DOE-1-3, it is hypothesised 

that these oxycarbides can further aid grain boundary pinning, further aiding an enhancement in creep life and as a 

result explaining both the slow onset of minimum displacement rate and high final displacement value before 

rupture.  

 

 
Figure 13. 90-DOE-1-1s brittle faceted fracture surface (left), 90-DOE-1-3s ductile dimpled fracture surface 

(right). 

 

In addition to parameter sets and build variations, build orientation is shown to have a major influence in the 

mechanical performance of these samples, where Figure 14 highlights a major drop in time to rupture between 30° 

and 90° builds, irrespective to build number variation. Table 4 highlights this remarkable drop of 18.2 hours in 

lifetime between 90-DOE-1-1 & 30-DOE-1-1, alongside a staggering 56.2 hour drop between 90-DOE-1-3 and 30-

DOE-1-3. This can be explained from a microstructural perspective, where under stress and specifically creep 

Sample Average Grain Length (μm) Average Grain Width (μm) 

90-DOE-1-1 208.81 24.90 

90-DOE-1-3 294.47 30.19 
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deformation, cavities form at boundaries. Within the 30° builds, the microstructure is equiaxed in relation to the 

transverse direction as seen in Figure 15 and subsequently grain boundaries are typically located parallel to the 

stress orientation induced during SPC testing. As a result of this, these boundaries are subject to more load given 

both the higher volume of grain boundaries and the fact that grain boundary sliding is encouraged. Therefore, 

cavitations are set to coalesce quicker, resulting in lower rupture times and higher minimum displacement rates as 

shown. Given the higher minimum displacement rate, it would be expected that the 30° build displays a severely 

faceted fracture surface which can be validated in Figure 16. 

 

 
Figure 14. Effect of build orientation on creep properties for parameter set 1, build numbers 1-3. 

 

Table 4. Mechanical property data gathered from SPCT for 30 and 90° builds orientations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. 90-DOE-1-1s columnar grain structure (left) and 30-DOE-1-1s equiaxed grain structure. (right). 

 

Sample ID 
Load 

[N] 
Temperature [°C] 

Time to Rupture 

[Hours] 

Minimum displacement rate 

[mm.hr-1] 

90-DOE-1-1 150 950 21.5 0.045 

90-DOE-1-2 150 950 30.5 0.027 

90-DOE-1-3 150 950 59.2 0.019 

30-DOE-1-1 150 950 3.3 0.135 

30-DOE-1-2 150 950 2.2 0.169 

30-DOE-1-3 150 950 3.0 0.128 
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Figure 16. Fracture surface images of 90-DOE-1-1 at low and high magnifications (left side). Fracture surface 

images of 30-DOE-1-1 at low and high magnifications (right side). 

 

4. Conclusions 

The investigation of additively manufactured high gamma prime nickel superalloys with various process 

parameters and variables were investigated both microstructurally and mechanically utilising the small punch creep 

test. It has been shown that energy density has a considerable impact on both the type and size of microstructural 

discontinuities present through differing mechanisms. Porosity and voids attributed to low energy densities in 

particular have been shown to be severely more detrimental to mechanical properties than microcracking 

mechanisms accredited to high energy densities. 

In addition to the differing parameter sets, the inconsistency of mechanical properties and microstructures 

between builds fabricated using the same processing variables has also been picked up utilising small punch creep 

testing. It is believed that this occurs due to the elastic heterogeneity of the samples microsctructure, where localised 

regions of differing microstructure have been picked up. In addition to this, given the small volume of material used 

in this methodology, results are subject to the sensitivity of material abnormalities such as porosity picked up within 

the specimens, giving rise to scatter. Fractography displayed contrasting failure modes between the best and worst 

performing build numbers, with 90-DOE-1-1 showcasing a brittle transgranular fracture and 90-DOE-1-3s failure 

displaying oxycarbides which indicated a grain boundary pinning/strengthening mechanism. 

Finally, a comparison of samples fabricated at 30° and 90° build orientation was conducted. The creep 

resistance of 30° builds were significantly degraded as a result of their grain boundaries being oriented parallel to 

the loading axis induced during SPC testing. This gives rise to accelerated coalescence of cavitations and 

consequently faster creep deformation at an accelerated minimum displacement rate of 0.135mm.hr-1 in comparison 

to 0.045mm.hr-1. Fractography of these samples indicated that the 30° builds displayed more severe brittle 

transgranular fracture. 
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