6 research outputs found

    Reliability Analysis of an Anchored Contiguous Pile Wall in Ankara Clay with the Random Set Finite Element Method

    No full text
    A deep excavation application characterized by imprecise data and lack of adequate information is used to demonstrate the efficiency, applicability, and validity of the random set theory in combination with finite element method (RS-FEM). A case history of an anchored contiguous pile wall in overconsolidated fissured Ankara Clay constructed for supporting the 15 m deep basement excavation of a nursing house in Seyranbaglari district of Ankara is considered. Existing buildings around the excavation area necessitated a careful examination of the wall deformations and the reliability of the system as a whole. However, the geotechnical parameters of the soil had to be estimated combining the results of very limited in-situ and laboratory tests with those obtained through previous experience of finite element analyses under similar conditions, i.e., expert knowledge. Plane strain finite element analyses were then performed to predict the contiguous pile retaining wall behavior. The parameters in the random set finite element model were chosen according to sensitivity analyses. Most likely bounds of the wall horizontal deformations were compared with those obtained from inclinometer readings. As suggested by previous case histories, wall deformations were observed to fall within the lower third of the range predicted by RS-FE

    Seismic risk estimation of the Kirikkale province through street survey based rapid assessment method (SSRA)

    No full text
    The seismic vulnerability of Turkey is relatively high due to its active fault systems with potential to create destructive earthquakes. Thus, reducing the loss of life and property, the number of the earthquake-prone buildings and their retrofit requirements are considerably significant key issues under the scenario earthquakes. The street survey based rapid assessment (SSRA) method can be considered as a powerful tool to determine the seismic vulnerability of building stock of an earthquake-prone city/state. In this study, the seismic vulnerability of the building stock of the Kirikkale province in Turkey is aimed to be estimated adopting the street survey based rapid assessment method (SSRA). For this purpose, central 2074 existing reinforced concrete (R/C) buildings were structurally surveyed with rapid visual site screening and disadvantages such as, the existence of short-column, soft-story, heavy overhangs, pounding effect and local soil conditions were determined for obtaining the structural performance score of each. The results obtained from the study demonstrate that 11-25% of the surveyed buildings in the study region needs to be investigated through more advanced assessment methods. Besides, higher correlation between increasing story number and unsafe/safe building ratio is obtained for the buildings with soft-story parameter than that for those with heavy overhangs and short-column parameters. The conformity of the results of the current study with the previous documented cases of rapid assessment efforts in the recent earthquakes in Turkey shows that the SSRA method for the Kirikkale province performed well, and thus this methodology can be reliably used for similar settlement areas. © 2018 Techno-Press, Ltd
    corecore