16 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Effects of pregnancy and protein-energy malnutrition on monooxygenase O-dealkylation activity in rat liver microsomes

    No full text
    Xenobiotic metabolism is influenced by a variety of physiological and environmental factors including pregnancy and nutritional status of the individual. Pregnancy has generally been reported to cause a depression of hepatic monooxygenase activities. Low-protein diets and protein-energy malnutrition have also been associated with a reduced activity of monooxygenases in nonpregnant animals. We investigated the combined effects of pregnancy and protein-energy malnutrition on liver monooxygenase O-dealkylation activity. On pregnancy day 0 rats were assigned at random to a group fed ad libitum (well-nourished, WN) or to a malnourished group (MN) which received half of the WN food intake (12 g/day). WN and MN rats were killed on days 0 (nonpregnant), 11 or 20 of pregnancy and ethoxy- (EROD), methoxy- (MROD) and penthoxy- (PROD) resorufin O-dealkylation activities were measured in liver microsomes. Only minor changes in enzyme activities were observed on pregnancy day 11, but a clear-cut reduction of monooxygenase activities (pmol resorufin min-1 mg protein-1) was noted near term (day 0 vs 20, means ± SD, Student t-test, P<0.05) in WN (EROD: 78.9 ± 15.1 vs 54.6 ± 10.2; MROD: 67.8 ± 10.0 vs 40.9 ± 7.2; PROD: 6.6 ± 0.9 vs 4.3 ± 0.8) and in MN (EROD: 89.2 ± 23.9 vs 46.9 ± 15.0; MROD: 66.8 ± 13.8 vs 27.9 ± 4.4; PROD: 6.3 ± 1.0 vs 4.1 ± 0.6) dams. On pregnancy day 20 MROD was lower in MN than in WN dams. Malnutrition did not increase the pregnancy-induced reduction of EROD and PROD activities. Thus, the present results suggest that the activities of liver monooxygenases are reduced in near-term pregnancy and that protein-energy malnutrition does not alter EROD or PROD in pregnant rats
    corecore