743 research outputs found

    Occurrence of methicillin-resistant Staphylococcus aureus in surface waters near industrial hog operation spray fields

    Get PDF
    Industrial hog operations (IHOs) have been identified as a source of antibiotic-resistant Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). However, few studies have investigated the presence of antibiotic-resistant S. aureus in the environment near IHOs, specifically surface waters proximal to spray fields where IHO liquid lagoon waste is sprayed. Surface water samples (n = 179) were collected over the course of approximately one year from nine locations in southeastern North Carolina and analyzed for the presence of presumptive MRSA using CHROMagar MRSA media. Culture-based, biochemical, and molecular tests, as well as matrix-assisted laser desorption/ionization-time of flight mass spectrometry were used to confirm that isolates that grew on CHROMagar MRSA media were S. aureus. Confirmed S. aureus isolates were then tested for susceptibility to 16 antibiotics and screened for molecular markers of MRSA (mecA, mecC) and livestock adaptation (absence of scn). A total of 12 confirmed MRSA were detected in 9 distinct water samples. Nine of 12 MRSA isolates were also multidrug-resistant (MDRSA [i.e., resistant to ≥ 3 antibiotic classes]). All MRSA were scn-positive and most (11/12) belonged to a staphylococcal protein A (spa) type t008, which is commonly associated with humans. Additionally, 12 confirmed S. aureus that were methicillin-susceptible (MSSA) were recovered, 7 of which belonged to spa type t021 and were scn-negative (a marker of livestock-adaptation). This study demonstrated the presence of MSSA, MRSA, and MDRSA in surface waters adjacent to IHO lagoon waste spray fields in southeastern North Carolina. To our knowledge, this is the first report of waterborne S. aureus from surface waters proximal to IHOs

    Domain walls between gauge theories

    Full text link
    Noncommutative U(N) gauge theories at different N may be often thought of as different sectors of a single theory: the U(1) theory possesses a sequence of vacua labeled by an integer parameter N, and the theory in the vicinity of the N-th vacuum coincides with the U(N) noncommutative gauge theory. We construct noncommutative domain walls on fuzzy cylinder, separating vacua with different gauge theories. These domain walls are solutions of BPS equations in gauge theory with an extra term stabilizing the radius of the cylinder. We study properties of the domain walls using adjoint scalar and fundamental fermion fields as probes. We show that the regions on different sides of the wall are not disjoint even in the low energy regime -- there are modes penetrating from one region to the other. We find that the wall supports a chiral fermion zero mode. Also, we study non-BPS solution representing a wall and an antiwall, and show that this solution is unstable. We suggest that the domain walls emerge as solutions of matrix model in large class of pp-wave backgrounds with inhomogeneous field strength. In the M-theory language, the domain walls have an interpretation of a stack of branes of fingerstall shape inserted into a stack of cylindrical branes.Comment: Final version; minor corrections; to appear in Nucl.Phys.

    A realisation of Lorentz algebra in Lorentz violating theory

    Full text link
    A Lorentz non-invariant higher derivative effective action in flat spacetime, characterised by a constant vector, can be made invariant under infinitesimal Lorentz transformations by restricting the allowed field configurations. These restricted fields are defined as functions of the background vector in such a way that background dependance of the dynamics of the physical system is no longer manifest. We show here that they also provide a field basis for the realisation of Lorentz algebra and allow the construction of a Poincar\'e invariant symplectic two form on the covariant phase space of the theory.Comment: text body edited, reference adde

    Black Hole Entropy without Brick Walls

    Get PDF
    We present evidence which confirms a suggestion by Susskind and Uglum regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't Hooft's approach to evaluating black hole entropy through a statistical-mechanical counting of states for a scalar field propagating outside the event horizon yields precisely the one-loop renormalization of the standard Bekenstein-Hawking formula, S=\A/(4G). Our calculation also yields a constant contribution to the black hole entropy, a contribution associated with the one-loop renormalization of higher curvature terms in the gravitational action.Comment: 15 pages, plain LaTex minor additions including some references; version accepted for publicatio

    Spin pumping and magnetization dynamics in metallic multilayers

    Full text link
    We study the magnetization dynamics in thin ferromagnetic films and small ferromagnetic particles in contact with paramagnetic conductors. A moving magnetization vector causes \textquotedblleft pumping\textquotedblright of spins into adjacent nonmagnetic layers. This spin transfer affects the magnetization dynamics similar to the Landau-Lifshitz-Gilbert phenomenology. The additional Gilbert damping is significant for small ferromagnets, when the nonmagnetic layers efficiently relax the injected spins, but the effect is reduced when a spin accumulation build-up in the normal metal opposes the spin pumping. The damping enhancement is governed by (and, in turn, can be used to measure) the mixing conductance or spin-torque parameter of the ferromagnet--normal-metal interface. Our theoretical findings are confirmed by agreement with recent experiments in a variety of multilayer systems.Comment: 10 pages, 6 figure
    • …
    corecore