308 research outputs found

    Phantom Field with O(N) Symmetry in Exponential Potential

    Full text link
    In this paper, we study the phase space of phantom model with O(\emph{N}) symmetry in exponential potential. Different from the model without O(\emph{N}) symmetry, the introduction of the symmetry leads to a lower bound w>−3w>-3 on the equation of state for the existence of stable phantom dominated attractor phase. The reconstruction relation between the potential of O(\textit{N}) phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.

    A social networking approach for mobile innovation in emerging countries

    Get PDF
    Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, February 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 121-122).Addressing the global challenges and the next billion mobile subscribers, the MIT NextLab course engages students, industry partners, entrepreneurs and the next billion mobile subscribers to develop innovative mobile services that improve the quality of life in the emerging countries. In three years, NextLab teams developed and deployed 29 projects in 14 counties, and five teams founded their own ventures after perceiving the strong demand from the vast mobile users in the developing world. However, the size and the amount of NextLab projects are limited by the schedule and the location of an academic course. The focus of this thesis is to research and develop a social networking platform that replicates the success of the NextLab course to reach out to more participants around the world. In this document, I utilized the social analysis framework to identify social processes among stakeholders in a general NextLab project, specify the possible social failures and research the possible solutions. Besides, I also reviewed the NextLab projects in 2008 and 2009 and developed the NextLab Project Development Process (NLPDP) that highlights the 12 critical stages of a NextLab project. Finally, I proposed the NextLab 2.0 Community that is integrates with the social networking solutions and the NextLab Project Development Process. The case study of the mobile logistics (m-Logistics) project is used to demonstrate how the proposed solution facilitates the collaboration and communication for a large and cross-country mobile innovation project. A number of recommendations were also discussed for further research.by Jen-Hao Yang.S.M.in Engineering and Managemen

    New mechanism to cross the phantom divide

    Full text link
    Recently, type Ia supernovae data appear to support a dark energy whose equation of state ww crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in the gravity with an additional inverse power-law term of Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. Some analytical solutions with w<−1w<-1 or w>−1w>-1 are obtained. A minimal coupled scalar with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are investigated via numerical methods, respectively. All these potentials lead to the crossing behavior. We show that it is a robust result which is hardly dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the published versio

    Gravitational Coupling and Dynamical Reduction of The Cosmological Constant

    Full text link
    We introduce a dynamical model to reduce a large cosmological constant to a sufficiently small value. The basic ingredient in this model is a distinction which has been made between the two unit systems used in cosmology and particle physics. We have used a conformal invariant gravitational model to define a particular conformal frame in terms of large scale properties of the universe. It is then argued that the contributions of mass scales in particle physics to the vacuum energy density should be considered in a different conformal frame. In this manner, a decaying mechanism is presented in which the conformal factor appears as a dynamical field and plays a key role to relax a large effective cosmological constant. Moreover, we argue that this model also provides a possible explanation for the coincidence problem.Comment: To appear in GR

    Very long optical path-length from a compact multi-pass cell

    Full text link
    The multiple-pass optical cell is an important tool for laser absorption spectroscopy and its many applications. For most practical applications, such as trace-gas detection, a compact and robust design is essential. Here we report an investigation into a multi-pass cell design based on a pair of cylindrical mirrors, with a particular focus on achieving very long optical paths. We demonstrate a path-length of 50.31 m in a cell with 40 mm diameter mirrors spaced 88.9 mm apart - a 3-fold increase over the previously reported longest path-length obtained with this type of cell configuration. We characterize the mechanical stability of the cell and describe the practical conditions necessary to achieve very long path-lengths

    Numerical study of multilayer adsorption on fractal surfaces

    Full text link
    We report a numerical study of van der Waals adsoprtion and capillary condensation effects on self-similar fractal surfaces. An assembly of uncoupled spherical pores with a power-law distributin of radii is used to model fractal surfaces with adjustable dimensions. We find that the commonly used fractal Frankel-Halsey-Hill equation systematically fails to give the correct dimension due to crossover effects, consistent with the findings of recent experiments. The effects of pore coupling and curvature dependent surface tension were also studied.Comment: 11 pages, 3 figure

    Deep level emission of ZnO nanoparticles deposited inside UV opal

    Full text link
    The temperature-dependent photoluminescence (PL) spectra of zinc oxide (ZnO) nanocrystals deposited inside the ultraviolet (UV) opal were studied. ZnO was grown in the voids between FCC packed silicon dioxide spheres using spray pyrolysis under ultrasonic vibration in the solution containing a zinc nitrate precursor. The ZnO nanoparticles inside opal matrix with UV photonic band-gap exhibit suppression of the excitonic emission and enhancement of the deep level emission. Suppression of the excitonic lines is due to the inhibition of spontaneous emission, while enhancement and broadening of the DL emission in the green spectral region is due to Purcell effect. The infiltration of ZnO inside the photonic crystal may be a useful technique to increase its emission efficiency in the selected spectral region.Comment: 22 pages, 4 figure

    Disparate MgII Absorption Statistics towards Quasars and Gamma-Ray Bursts : A Possible Explanation

    Full text link
    We examine the recent report by Prochter et al. (2006) that gamma-ray burst (GRB) sight lines have a much higher incidence of strong MgII absorption than quasar sight lines. We propose that the discrepancy is due to the different beam sizes of GRBs and quasars, and that the intervening MgII systems are clumpy with the dense part of each cloudlet of a similar size as the quasars, i.e. < 10^16 cm, but bigger than GRBs. We also discuss observational predictions of our proposed model. Most notably, in some cases the intervening MgII absorbers in GRB spectra should be seen varying, and quasars with smaller sizes should show an increased rate of strong MgII absorbers. In fact, our prediction of variable MgII lines in the GRB spectra has been now confirmed by Hao et al. (2007), who observed intervening FeII and MgII lines at z=1.48 to be strongly variable in the multi-epoch spectra of z=4.05 GRB060206.Comment: 12 pages, 2 figures; substantially revised model calculation; accepted for publication in Astrophysics & Space Science as a Lette

    Chaotic scalar fields as models for dark energy

    Full text link
    We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy in the universe. Second quantization effects lead to new and unexpected phenomena is the self interaction strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without fine tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such as the electroweak and strong coupling constants as corresponding to local minima in the dark energy landscape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the problem of uniqueness of vacua.Comment: 30 pages, 3 figures. Replaced by final version accepted by Phys. Rev.
    • …
    corecore