49 research outputs found

    Nuclear receptors of the honey bee: annotation and expression in the adult brain

    Get PDF
    The Drosophila genome encodes 18 canonical nuclear receptors. All of the Drosophila nuclear receptors are here shown to be present in the genome of the honey bee (Apis mellifera). Given that the time since divergence of the Drosophila and Apis lineages is measured in hundreds of millions of years, the identification of matched orthologous nuclear receptors in the two genomes reveals the fundamental set of nuclear receptors required to ‘make’ an endopterygote insect. The single novelty is the presence in the A. mellifera genome of a third insect gene similar to vertebrate photoreceptor-specific nuclear receptor (PNR). Phylogenetic analysis indicates that this novel gene, which we have named AmPNR-like, is a new member of the NR2 subfamily not found in the Drosophila or human genomes. This gene is expressed in the developing compound eye of the honey bee. Like their vertebrate counterparts, arthropod nuclear receptors play key roles in embryonic and postembryonic development. Studies in Drosophila have focused primarily on the role of these transcription factors in embryogenesis and metamorphosis. Examination of an expressed sequence tag library developed from the adult bee brain and analysis of transcript expression in brain using in situ hybridization and quantitative RT-PCR revealed that several members of the nuclear receptor family (AmSVP, AmUSP, AmERR, AmHr46, AmFtz-F1, and AmHnf-4) are expressed in the brain of the adult bee. Further analysis of the expression of AmUSP and AmSVP in the mushroom bodies, the major insect brain centre for learning and memory, revealed changes in transcript abundance and, in the case of AmUSP, changes in transcript localization, during the development of foraging behaviour in the adult. Study of the honey bee therefore provides a model for understanding nuclear receptor function in the adult brain

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    In-beam Îł-ray spectroscopy of Cr 62,64

    Get PDF
    The region of neutron-rich Cr isotopes has garnered much attention in recent years due to a rapid onset of collectivity near neutron number N=40. We report here on the first Îł-ray spectroscopy beyond the (41+) state in Cr62,64, using nucleon removal reactions from several projectiles within a rare-isotope beam cocktail. A candidate for the 6+ state in Cr64 is presented as well as one for, possibly, the second excited 0+ state in Cr62. The results are discussed in comparison to the LNPS shell-model predictions that allow for neutron excitations across the N=40 harmonic oscillator gap into the g9/2 and d5/2 orbitals. The calculated level schemes for Cr62,64 reveal intriguing collective structures. From the predicted neutron particle-hole character of the low-lying states in these Cr isotopes, Cr62 emerges as a transitional system on the path to the center of the N=40 island of inversion

    Grainyhead-like 2 reverses the metabolic changes induced by the oncogenic epithelial-mesenchymal transition: effects on anoikis

    No full text
    Resistance to anoikis is a prerequisite for tumor metastasis. The epithelial-to-mesenchymal transition (EMT) allows tumor cells to evade anoikis. The wound-healing regulatory transcription factor Grainyhead-like 2 (GRHL2) suppresses/reverses EMT, accompanied by suppression of the cancer stem cell (CSC) phenotype and by resensitization to anoikis. Here, the effects of GRHL2 upon intracellular metabolism in the context of reversion of the EMT/CSC phenotype, with a view toward understanding how these effects promote anoikis sensitivity, were investigated. EMT enhanced mitochondrial oxidative metabolism. Although this was accompanied by higher accumulation of superoxide, the overall level of reactive oxygen species (ROS) declined, due to decreased hydrogen peroxide. Glutamate dehydrogenase 1 (GLUD1) expression increased in EMT, and this increase, via the product α-ketoglutarate (α-KG), was important for suppressing hydrogen peroxide and protecting against anoikis. GRHL2 suppressed GLUD1 gene expression, decreased α-KG, increased ROS, and sensitized cells to anoikis

    In-beam Îł\gamma-ray spectroscopy of 62,64Cr^{62,64}\mathrm{Cr}

    Get PDF
    International audienceThe region of neutron-rich Cr isotopes has garnered much attention in recent years due to a rapid onset of collectivity near neutron number N=40. We report here on the first Îł-ray spectroscopy beyond the (41+) state in Cr62,64, using nucleon removal reactions from several projectiles within a rare-isotope beam cocktail. A candidate for the 6+ state in Cr64 is presented as well as one for, possibly, the second excited 0+ state in Cr62. The results are discussed in comparison to the LNPS shell-model predictions that allow for neutron excitations across the N=40 harmonic oscillator gap into the g9/2 and d5/2 orbitals. The calculated level schemes for Cr62,64 reveal intriguing collective structures. From the predicted neutron particle-hole character of the low-lying states in these Cr isotopes, Cr62 emerges as a transitional system on the path to the center of the N=40 island of inversion
    corecore