1,096 research outputs found

    Onderscheid tussen aandacht- en leesproblemen bij kinderen.

    Get PDF
    Distinction between reading disability and attention deficit using tests of cognition

    Matter-induced vertices for photon splitting in a weakly magnetized plasma

    Get PDF
    We evaluate the three-photon vertex functions at order BB and B2B^{2} in a weak constant magnetic field at finite temperature and density with on shell external lines. Their application to the study of the photon splitting process leads to consider high energy photons whose dispersion relations are not changed significantly by the plasma effects. The absorption coefficient is computed and compared with the perturbative vacuum result. For the values of temperature and density of some astrophysical objects with a weak magnetic field, the matter effects are negligible.Comment: 14 pages, 1 figure. Accepted for publication in PR

    Higher spins dynamics in the closed string theory

    Get PDF
    The general σ\sigma-model-type string action including both massless and massive higher spins background fields is suggested. Field equations for background fields are followed from the requirement of quantum Weyl invariance. It is shown that renormalization of the theory can be produced level by level. The detailed consideration of background fields structure and corresponding fields equations is given for the first massive level of the closed bosonic string.Comment: 11 pages, report TSU/QFTD-36/9

    Skyrmion Dynamics and NMR Line Shapes in QHE Ferromagnets

    Full text link
    The low energy charged excitations in quantum Hall ferromagnets are topological defects in the spin orientation known as skyrmions. Recent experimental studies on nuclear magnetic resonance spectral line shapes in quantum well heterostructures show a transition from a motionally narrowed to a broader `frozen' line shape as the temperature is lowered at fixed filling factor. We present a skyrmion diffusion model that describes the experimental observations qualitatively and shows a time scale of 50μsec\sim 50 \mu{\rm sec} for the transport relaxation time of the skyrmions. The transition is characterized by an intermediate time regime that we demonstrate is weakly sensitive to the dynamics of the charged spin texture excitations and the sub-band electronic wave functions within our model. We also show that the spectral line shape is very sensitive to the nuclear polarization profile along the z-axis obtained through the optical pumping technique.Comment: 6 pages, 4 figure

    Experimental determination of the 6s^2 ^1S_0 -> 5d6s ^3 D_1 magnetic-dipole transition amplitude in atomic ytterbium

    Full text link
    We report on a measurement of the highly forbidden 6s^2 ^1S_0 \to 5d6s ^3 D_1 magnetic-dipole transition in atomic ytterbium using the Stark-interference technique. This amplitude is important in interpreting a future parity nonconservation experiment that exploits the same transition. We find  = 1.33(6)Stat(20)β×104μ0| | ~ = ~ 1.33(6)_{Stat}(20)_{\beta} \times 10^{-4} \mu_0, where the larger uncertainty comes from the previously measured vector transition polarizability β\beta. The M1M1 amplitude is small and should not limit the precision of the parity nonconservation experiment.Comment: 4 pages, 5 figures Paper resubmitted with minor corrections and additions based on comments from referee

    Thermal Unparticles: A New Form of Energy Density in the Universe

    Full text link
    Unparticle \U with scaling dimension d_\U has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter \omega_\U, the ratio of pressure to energy density, is given by 1/(2d_\U +1) providing a new form of energy in our universe. In an expanding universe, the unparticle energy density \rho_\U(T) evolves dramatically differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a high decoupling temperature TDT_D is very small, it is possible to have a large relic density \rho_\U(T^0_\gamma) at present photon temperature Tγ0T^0_\gamma, large enough to play the role of dark matter. We calculate TDT_D and \rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version

    Effect of an inhomogeneous external magnetic field on a quantum dot quantum computer

    Full text link
    We calculate the effect of an inhomogeneous magnetic field, which is invariably present in an experimental environment, on the exchange energy of a double quantum dot artificial molecule, projected to be used as a 2-qubit quantum gate in the proposed quantum dot quantum computer. We use two different theoretical methods to calculate the Hilbert space structure in the presence of the inhomogeneous field: the Heitler-London method which is carried out analytically and the molecular orbital method which is done computationally. Within these approximations we show that the exchange energy J changes slowly when the coupled dots are subject to a magnetic field with a wide range of inhomogeneity, suggesting swap operations can be performed in such an environment as long as quantum error correction is applied to account for the Zeeman term. We also point out the quantum interference nature of this slow variation in exchange.Comment: 12 pages, 4 figures embedded in tex

    Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment

    Full text link
    We present results on disordered amorphous films which are expected to undergo a field-tuned Superconductor-Insulator Transition.The addition of a parallel ground plane in proximity to the film changes the character of the transition.Although the screening effects expected from "dirty-boson" theories are not evident,there is evidence that the ground plane couples a certain type of dissipation into the system,causing a dissipation-induced phase transition.The dissipation due to the phase transition couples similarly into quantum phase transition systems such as superconductor-insulator transitions and Josephson junction arrays.Comment: 4 pages, 4 figure

    Spin instabilities and quantum phase transitions in integral and fractional quantum Hall states

    Full text link
    The inter-Landau-level spin excitations of quantum Hall states at filling factors nu=2 and 4/3 are investigated by exact numerical diagonalization for the situation in which the cyclotron (hbar*omega_c) and Zeeman (E_Z) splittings are comparable. The relevant quasiparticles and their interactions are studied, including stable spin wave and skyrmion bound states. For nu=2, a spin instability at a finite value of epsilon=hbar*omega_c-E_Z leads to an abrupt paramagnetic to ferromagnetic transition, in agreement with the mean-field approximation. However, for nu=4/3 a new and unexpected quantum phase transition is found which involves a gradual change from paramagnetic to ferromagnetic occupancy of the partially filled Landau level as epsilon is decreased.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Let

    Interlayer Exchange Interactions, SU(4) Soft Waves and Skyrmions in Bilayer Quantum Hall Ferromagnets

    Full text link
    The Coulomb exchange interaction is the driving force for quantum coherence in quantum Hall systems. We construct a microscopic Landau-site Hamiltonian for the exchange interaction in bilayer quantum Hall ferromagnets, which is characterized by the SU(4) isospin structure. By taking a continuous limit, the Hamiltonian gives rise to the SU(4) nonlinear sigma model in the von-Neumann-lattice formulation. The ground-state energy is evaluated at filling factors ν=1,2,3,4\nu =1,2,3,4. It is shown at ν=1\nu =1 that there are 3 independent soft waves, where only one soft wave is responsible for the coherent tunneling of electrons between the two layers. It is also shown at ν=1\nu =1 that there are 3 independent skyrmion states apart from the translational degree of freedom. They are CP3^{3} skyrmions enjoying the spin-charge entanglement confined within the \LLL.Comment: 12 pages, 2 figure
    corecore