1,096 research outputs found
Onderscheid tussen aandacht- en leesproblemen bij kinderen.
Distinction between reading disability and attention deficit using tests of cognition
Matter-induced vertices for photon splitting in a weakly magnetized plasma
We evaluate the three-photon vertex functions at order and in a
weak constant magnetic field at finite temperature and density with on shell
external lines. Their application to the study of the photon splitting process
leads to consider high energy photons whose dispersion relations are not
changed significantly by the plasma effects. The absorption coefficient is
computed and compared with the perturbative vacuum result. For the values of
temperature and density of some astrophysical objects with a weak magnetic
field, the matter effects are negligible.Comment: 14 pages, 1 figure. Accepted for publication in PR
Higher spins dynamics in the closed string theory
The general -model-type string action including both massless and
massive higher spins background fields is suggested. Field equations for
background fields are followed from the requirement of quantum Weyl invariance.
It is shown that renormalization of the theory can be produced level by level.
The detailed consideration of background fields structure and corresponding
fields equations is given for the first massive level of the closed bosonic
string.Comment: 11 pages, report TSU/QFTD-36/9
Skyrmion Dynamics and NMR Line Shapes in QHE Ferromagnets
The low energy charged excitations in quantum Hall ferromagnets are
topological defects in the spin orientation known as skyrmions. Recent
experimental studies on nuclear magnetic resonance spectral line shapes in
quantum well heterostructures show a transition from a motionally narrowed to a
broader `frozen' line shape as the temperature is lowered at fixed filling
factor. We present a skyrmion diffusion model that describes the experimental
observations qualitatively and shows a time scale of for
the transport relaxation time of the skyrmions. The transition is characterized
by an intermediate time regime that we demonstrate is weakly sensitive to the
dynamics of the charged spin texture excitations and the sub-band electronic
wave functions within our model. We also show that the spectral line shape is
very sensitive to the nuclear polarization profile along the z-axis obtained
through the optical pumping technique.Comment: 6 pages, 4 figure
Experimental determination of the 6s^2 ^1S_0 -> 5d6s ^3 D_1 magnetic-dipole transition amplitude in atomic ytterbium
We report on a measurement of the highly forbidden 6s^2 ^1S_0 \to 5d6s ^3
D_1 magnetic-dipole transition in atomic ytterbium using the
Stark-interference technique. This amplitude is important in interpreting a
future parity nonconservation experiment that exploits the same transition. We
find , where the larger uncertainty comes from the previously
measured vector transition polarizability . The amplitude is small
and should not limit the precision of the parity nonconservation experiment.Comment: 4 pages, 5 figures Paper resubmitted with minor corrections and
additions based on comments from referee
Thermal Unparticles: A New Form of Energy Density in the Universe
Unparticle \U with scaling dimension d_\U has peculiar thermal properties
due to its unique phase space structure. We find that the equation of state
parameter \omega_\U, the ratio of pressure to energy density, is given by
1/(2d_\U +1) providing a new form of energy in our universe. In an expanding
universe, the unparticle energy density \rho_\U(T) evolves dramatically
differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a
high decoupling temperature is very small, it is possible to have a large
relic density \rho_\U(T^0_\gamma) at present photon temperature ,
large enough to play the role of dark matter. We calculate and
\rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version
Effect of an inhomogeneous external magnetic field on a quantum dot quantum computer
We calculate the effect of an inhomogeneous magnetic field, which is
invariably present in an experimental environment, on the exchange energy of a
double quantum dot artificial molecule, projected to be used as a 2-qubit
quantum gate in the proposed quantum dot quantum computer. We use two different
theoretical methods to calculate the Hilbert space structure in the presence of
the inhomogeneous field: the Heitler-London method which is carried out
analytically and the molecular orbital method which is done computationally.
Within these approximations we show that the exchange energy J changes slowly
when the coupled dots are subject to a magnetic field with a wide range of
inhomogeneity, suggesting swap operations can be performed in such an
environment as long as quantum error correction is applied to account for the
Zeeman term. We also point out the quantum interference nature of this slow
variation in exchange.Comment: 12 pages, 4 figures embedded in tex
Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition.The addition of a
parallel ground plane in proximity to the film changes the character of the
transition.Although the screening effects expected from "dirty-boson" theories
are not evident,there is evidence that the ground plane couples a certain type
of dissipation into the system,causing a dissipation-induced phase
transition.The dissipation due to the phase transition couples similarly into
quantum phase transition systems such as superconductor-insulator transitions
and Josephson junction arrays.Comment: 4 pages, 4 figure
Spin instabilities and quantum phase transitions in integral and fractional quantum Hall states
The inter-Landau-level spin excitations of quantum Hall states at filling
factors nu=2 and 4/3 are investigated by exact numerical diagonalization for
the situation in which the cyclotron (hbar*omega_c) and Zeeman (E_Z) splittings
are comparable. The relevant quasiparticles and their interactions are studied,
including stable spin wave and skyrmion bound states. For nu=2, a spin
instability at a finite value of epsilon=hbar*omega_c-E_Z leads to an abrupt
paramagnetic to ferromagnetic transition, in agreement with the mean-field
approximation. However, for nu=4/3 a new and unexpected quantum phase
transition is found which involves a gradual change from paramagnetic to
ferromagnetic occupancy of the partially filled Landau level as epsilon is
decreased.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Let
Interlayer Exchange Interactions, SU(4) Soft Waves and Skyrmions in Bilayer Quantum Hall Ferromagnets
The Coulomb exchange interaction is the driving force for quantum coherence
in quantum Hall systems. We construct a microscopic Landau-site Hamiltonian for
the exchange interaction in bilayer quantum Hall ferromagnets, which is
characterized by the SU(4) isospin structure. By taking a continuous limit, the
Hamiltonian gives rise to the SU(4) nonlinear sigma model in the
von-Neumann-lattice formulation. The ground-state energy is evaluated at
filling factors . It is shown at that there are 3
independent soft waves, where only one soft wave is responsible for the
coherent tunneling of electrons between the two layers. It is also shown at
that there are 3 independent skyrmion states apart from the
translational degree of freedom. They are CP skyrmions enjoying the
spin-charge entanglement confined within the \LLL.Comment: 12 pages, 2 figure
- …