1,707 research outputs found

    PCN129 Mapping the Cancer-Specific EORTC QLQ-C30 and EORTC QLQ-BR23 to the Generic EQ-5D in Metastatic Breast Cancer Patients

    Get PDF

    Higgs Boson Bounds in Three and Four Generation Scenarios

    Full text link
    In light of recent experimental results, we present updated bounds on the lightest Higgs boson mass in the Standard Model (SM) and in the Minimal Supersymmetric extension of the Standard Model (MSSM). The vacuum stability lower bound on the pure SM Higgs boson mass when the SM is taken to be valid up to the Planck scale lies above the MSSM lightest Higgs boson mass upper bound for a large amount of SUSY parameter space. If the lightest Higgs boson is detected with a mass M_{H} < 134 GeV (150 GeV) for a top quark mass M_{top} = 172 GeV (179 GeV), it may indicate the existence of a fourth generation of fermions. The region of inconsistency is removed and the MSSM is salvagable for such values of M_{H} if one postulates the existence of a fourth generation of leptons and quarks with isodoublet degenerate masses M_{L} and M_{Q} such that 60 GeV 170 GeV.Comment: 7 pages, 4 figures. To be published in Physical Review

    Solving the Resource Allocation Problem in a Multimodal Container Terminal as a Network Flow Problem

    Get PDF
    International audienceContinuously increasing global container trade and pressure from a limited number of large shipping companies are enforcing the need for efficient container terminals. By using internal material handling resources efficiently, transfer times and operating costs are reduced. We focus our study on container terminals using straddle carriers for transportation and storage operations. We assume that straddle carriers are shared among maritime and inland transport modes (truck, train, barge). The problem is thus to decide how many resources to allocate to each transport mode in order to minimize vehicle (vessel, truck, train, barge) delays. We present a mixed integer linear programming model, based on a network flow representation, to solve this allocation problem. The modular structure of the model enables us to represent different container terminals, transport modes and service strategies. We present parts of our model and exemplary applications for a terminal at the Grand Port Maritime de Marseille in France

    Critical flux pinning and enhanced upper-critical-field in magnesium diboride films

    Full text link
    We have conducted pulsed transport measurements on c-axis oriented magnesium diboride films over the entire relevant ranges of magnetic field 0 \alt H \alt H_{c2} (where \hcu is the upper critical field) and current density 0 \alt j \alt j_{d} (where jdj_{d} is the depairing current density). The intrinsic disorder of the films combined with the large coherence length and three-dimensionality, compared to cuprate superconductors, results in a six-fold enhancement of Hc2H_{c2} and raises the depinning current density jcj_{c} to within an order of magnitude of jdj_{d}. The current-voltage response is highly non-linear at all fields, resulting from a combination of depinning and pair-breaking, and has no trace of an Ohmic free-flux-flow regime. Keywords: pair, breaking, depairing, superconductor, superconductivity, flux, fluxon, vortex, mgb

    Photoemission and x-ray absorption spectroscopy study of electron-doped colossal magnetoresistance manganite: La0.7Ce0.3MnO3 film

    Full text link
    The electronic structure of La0.7Ce0.3MnO3 (LCeMO) thin film has been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Ce 3d core-level PES and XAS spectra of LCeMO are very similar to those of CeO2, indicating that Ce ions are far from being trivalent. A very weak 4f resonance is observed around the Ce 4d →\to 4f absorption edge, suggesting that the localized Ce 4f states are almost empty in the ground state. The Mn 2p XAS spectrum reveals the existence of the Mn(2+) multiplet feature, confirming the Mn(2+)-Mn(3+) mixed-valent states of Mn ions in LCeMO. The measured Mn 3d PES/XAS spectra for LCeMO agrees reasonably well with the calculated Mn 3d PDOS using the LSDA+U method. The LSDA+U calculation predicts a half-metallic ground state for LCeMO.Comment: 7 pages, 7 figure

    Numerical studies towards practical large-eddy simulation

    Get PDF
    Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine

    Neutrino Oscillations and Collider Test of the R-parity Violating Minimal Supergravity Model

    Full text link
    We study the R-parity violating minimal supergravity models accounting for the observed neutrino masses and mixing, which can be tested in future collider experiments. The bi-large mixing can be explained by allowing five dominant tri-linear couplings λ1,2,3â€Č \lambda'_{1,2,3} and λ1,2\lambda_{1,2}. The desired ratio of the atmospheric and solar neutrino mass-squared differences can be obtained in a very limited parameter space where the tree-level contribution is tuned to be suppressed. In this allowed region, we quantify the correlation between the three neutrino mixing angles and the tri-linear R-parity violating couplings. Qualitatively, the relations ∣λ1â€Č∣<∣λ2â€ČâˆŁâˆŒâˆŁÎ»3â€Č∣| \lambda'_1 | < | \lambda'_2| \sim | \lambda'_3|, and ∣λ1âˆŁâˆŒâˆŁÎ»2∣|\lambda_1| \sim |\lambda_2| are required by the large atmospheric neutrino mixing angle Ξ23\theta_{23} and the small angle Ξ13\theta_{13}, and the large solar neutrino mixing angle Ξ12\theta_{12}, respectively. Such a prediction on the couplings can be tested in the next linear colliders by observing the branching ratios of the lightest supersymmetric particle (LSP). For the stau or the neutralino LSP, the ratio ∣λ1∣2:∣λ2∣2:∣λ1∣2+∣λ2∣2|\lambda_1|^2: |\lambda_2|^2: |\lambda_1|^2 + |\lambda_2|^2 can be measured by establishing Br(eÎœ):Br(ΌΜ):Br(Ï„Îœ)Br(e\nu): Br(\mu\nu) : Br(\tau\nu) or Br(Îœe±τ∓):Br(ΜΌ±τ∓):Br(Μτ±τ∓)Br(\nu e^\pm \tau^\mp ): Br(\nu\mu^\pm\tau^\mp) : Br(\nu\tau^\pm\tau^\mp), respectively. The information on the couplings λiâ€Č\lambda'_i can be drawn by measuring Br(litbˉ)âˆâˆŁÎ»iâ€Č∣2Br(l_i t \bar{b}) \propto |\lambda'_i|^2 if the neutralino LSP is heavier than the top quark.Comment: RevTex, 25 pages, 8 eps figure

    Screening of Dirac flavor structure in the seesaw and neutrino mixing

    Full text link
    We consider the mechanism of screening of the Dirac flavor structure in the context of the double seesaw mechanism. As a consequence of screening, the structure of the light neutrino mass matrix, m_\nu, is determined essentially by the structure of the (Majorana) mass matrix, M_S, of new super-heavy (Planck scale) neutral fermions S. We calculate effects of the renormalization group running in order to investigate the stability of the screening mechanism with respect to radiative corrections. We find that screening is stable in the supersymmetric case, whereas in the standard model it is unstable for certain structures of M_S. The screening mechanism allows us to reconcile the (approximate) quark-lepton symmetry and the strong difference of the mixing patterns in the quark and lepton sectors. It opens new possibilities to explain a quasi-degenerate neutrino mass spectrum, special ``neutrino'' symmetries and quark-lepton complementarity. Screening can emerge from certain flavor symmetries or Grand Unification.Comment: 27 pages, 3 figures; references added, discussion of the E6 model modifie

    The High Magnetic Field Phase Diagram of a Quasi-One Dimensional Metal

    Full text link
    We present a unique high magnetic field phase of the quasi-one dimensional organic conductor (TMTSF)2_2ClO4_4. This phase, termed "Q-ClO4_4", is obtained by rapid thermal quenching to avoid ordering of the ClO4_4 anion. The magnetic field dependent phase of Q-ClO4_4 is distinctly different from that in the extensively studied annealed material. Q-ClO4_4 exhibits a spin density wave (SDW) transition at ≈\approx 5 K which is strongly magnetic field dependent. This dependence is well described by the theoretical treatment of Bjelis and Maki. We show that Q-ClO4_4 provides a new B-T phase diagram in the hierarchy of low-dimensional organic metals (one-dimensional towards two-dimensional), and describe the temperature dependence of the of the quantum oscillations observed in the SDW phase.Comment: 10 pages, 4 figures, preprin
    • 

    corecore