62 research outputs found

    Clustered blockwise PCA for representing visual data

    Full text link

    Multiple view image denoising

    Get PDF

    Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation

    Full text link
    We present a computational model and algorithm for detecting diffuse and specular interface reflections and some inter-reflections. Our color reflection model is based on the dichromatic model for dielectric materials and on a color space, called S space, formed with three orthogonal basis functions. We transform color pixels measured in RGB into the S space and analyze color variations on objects in terms of brightness, hue and saturation which are defined in the S space. When transforming the original RGB data into the S space, we discount the scene illumination color that is estimated using a white reference plate as an active probe. As a result, the color image appears as if the scene illumination is white. Under the whitened illumination, the interface reflection clusters in the S space are all aligned with the brightness direction. The brightness, hue and saturation values exhibit a more direct correspondence to body colors and to diffuse and specular interface reflections, shading, shadows and inter-reflections than the RGB coordinates. We exploit these relationships to segment the color image, and to separate specular and diffuse interface reflections and some inter-reflections from body reflections. The proposed algorithm is effications for uniformly colored dielectric surfaces under singly colored scene illumination. Experimental results conform to our model and algorithm within the liminations discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41303/1/11263_2004_Article_BF00128233.pd

    Computational Cameras: Redefining the Image

    No full text

    Ferroresonant oscillations in capacitor voltage transformers

    No full text

    Nonmetric calibration of wide-angle lenses and polycameras

    No full text

    Shadow Graphs and Surface Reconstruction

    No full text
    We present a method to solve shape-from-shadow using shadow graphs which give a new graph-based representation for shadow constraints. It can be shown that the shadow graph alone is enough to solve the shape-from-shadow problem from a dense set of images. Shadow graphs provide a simpler and more systematic approach to represent and integrate shadow constraints from multiple images. To recover shape from a sparse set of images, we propose a method for integrated shadow and shading constraints. Previous shape-from-shadow algorithms do not consider shading constraints while shape-from-shading usually assumes there is no shadow. Our method is based on collecting a set of images from a fixed viewpoint as a known light source changes its position. It first builds a shadow graph from shadow constraints from which an upper bound for each pixel can be derived if the height values of a small number of pixels are initialized properly. Finally, a constrained optimization procedure is designed to make the results from shape-from-shading consistent with the upper bounds derived from the shadow constraints. Our technique is demonstrated on both synthetic and real imagery

    Real-time focus range sensor

    No full text
    • …
    corecore