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Abstract
We present a novel multi-view denoising algorithm. Our

algorithm takes noisy images taken from different viewpoints
as input and groups similar patches in the input images using
depth estimation. We model intensity-dependent noise in low-
light conditions and use the principal component analysis and
tensor analysis to remove such noise. The dimensionalities for
both PCA and tensor analysis are automatically computed in
a way that is adaptive to the complexity of image structures in
the patches. Our method is based on a probabilistic formu-
lation that marginalizes depth maps as hidden variables and
therefore does not require perfect depth estimation. We val-
idate our algorithm on both synthetic and real images with
different content. Our algorithm compares favorably against
several state-of-the-art denoising algorithms.

1. Introduction
Capturing a pinhole image (large depth-of-field) is impor-

tant to many computer vision applications, such as 3D recon-
struction, motion analysis, and video surveillance. For a dy-
namic scene, capturing pinhole images however is difficult:
we have often to make a tradeoff between depth-of-field and
motion blur. For example, if we use a large aperture and short
exposure to avoid motion blur, the resulting images will have
small depth-of-field; otherwise, if we use a small aperture and
long exposure, the depth-of-field will be large, but at the ex-
pense of motion blur.

In this work, we propose a new approach to acquiring pin-
hole images using many pinhole cameras. The cameras can
be distributed spatially to monitor a common scene, or com-
pactly assembled as a camera array. Each camera uses a small
aperture and short exposure to ensure minimal optical defocus
and motion blur. Under such camera settings, the incoming
light is very weak and the images are extremely noisy. We cast
pinhole imaging as a denoising problem and seek to restore
all the pinhole images by jointly removing noise in different
viewpoints.

Using multi-view images for noise reduction has a unique
advantage: pixel correspondence from one image to all other
images is determined by its single depth map. This advantage
contrasts with video denoising, where motion between frames
in general has many more degrees of freedom. Although this
observation is a common sense in 3D vision, we are the first to
use it for finding similar image patches in multi-view denois-
ing. Specifically, our denoising method is built upon the recent
development in image denoising literature, where similar im-
age patches are grouped together and “collaboratively” filtered
to reduce noise. When considering whether a pair of patches

in one image is similar or not, we simultaneously consider the
similarity between corresponding patches in all other views
using depth estimation. This depth-guided patch matching im-
proves patch grouping accuracy and substantially boosts de-
noising performance, as demonstrated later in this paper. The
main contributions of our work include:
• Depth-guided denoising: Using depth estimation as a

constraint, our method is able to group similar image
patches in the presence of large noise and exploit data
redundancy across views for noise removal.
• Removing signal-dependent noise: In low-light condi-

tions, photon noise is manifest whose variance depends
on its mean. We propose to use the principal component
analysis and tensor analysis to remove such noise.
• Adaptive noise reduction: For both PCA and tensor

analysis, we propose an effective scheme to automatically
choose dimensionalities in a way that is adaptive to the
complexity of image structures in the patches.
• Tolerance to depth imperfection: Our method is based

on a probabilistic formulation that marginalizes depth
maps as hidden variables and therefore does not require
perfect depth estimation.

From an application perspective, our approach does not re-
quire any change in camera optics or image detectors. All it
uses is a set of pinhole cameras, such as those equipped on
cell phones. Such flexibilities make our method applicable to
places that can only take miniaturized cameras with simple op-
tics, such as low-power video surveillance networks, portable
camera arrays, and multi-camera laparoscopy. In all cases, the
baselines between different cameras can be appreciable, mak-
ing it possible to reconstruct the 3D scene structure from the
denoised images, which can then be used in other applications,
such as refocusing, new view synthesis, and 3D object detec-
tion and recognition.

2. Related Work
In the last decade, great progress has been made in im-

age denoising, for example [17, 2, 7, 14, 6, 19, 8], just to
name a few. We refer the readers to the previous work sec-
tions in [2, 6] for excellent reviews of the literature. Among
these methods, several produce very impressive results, such
as non-local mean [2], BM3D [6], and SA-DCT [8]. All these
methods are built upon the same observation that local image
patches are often repetitive within an image. Similar patches
in an image are grouped together and “collaboratively” filtered
to remove noise. While these methods have different algorith-
mic details, their performance is comparable. Although there
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Figure 1. The relationship between pixel mean (horizonal-axis) and
variance (vertical-axis) for Nikon D50 (left) and PointGrey Dragonfly
Express (right). Each red point represents the (mean,variance) of a
pixel estimated from multiple images of a static scene. The blue lines
are the linear regression of the red points. This figure validates our
noise variance model of Eq. (2).

is no theoretic proof, we conjecture that the performance limit
of single-image denoising has probably been reached.

One approach to break this limit is to use more input im-
ages, such as video denoising [1, 5, 3]. To exploit redun-
dant data in a video, similar patches need to be matched over
time for noise removal. Another way of leveraging more input
images is to reconstruct a clean image from noisy measure-
ments from multiple viewpoints, proposed by Vaish et al. [20].
Only image redundancy across viewpoints is exploited in [20],
and patch similarity within individual images is however ne-
glected. In [10], Heo et al. proposed to combine NL-mean
denoising with binocular stereo matching, therefore exploit-
ing data redundancy both across views and within each im-
age. Heo et al.’s main idea is to apply NL-mean to both left
and right images and then use the estimated depth to average
the two denoised images. Note that, when applying NL-mean,
their method matches patches in each image independently;
such an approach is fragile in the presence of large image
noise. Indeed, their method has only been evaluated using im-
ages with a noise standard deviation up to 20. Our method
matches patches simultaneously among all input images us-
ing depth as a constraint, which is robust to much more severe
noise (standard deviation of 50), as shown in our paper and
supplemental material. A comparison between patch match-
ing using a single image versus multiple images is shown in
Figure 2.

Using multiple input images to improve the accuracy of
patch matching is the key idea in multi-baseline stereo [16]
for depth estimation. In this paper, we use depth estimation
as a constraint to group similar patches in multi-view images
for denoising. Patch repetitiveness is also the cornerstone of
Epitome analysis [4], which can be used for compression and
super-resolution, in addition to denoising. There has been no
evaluation between epitome-based denoising and state-of-the-
art denoising methods.

Recently, light field cameras [15] have been proposed to
achieve large depth of field and high signal-to-noise ratio, at
the expense of reduced image resolution. Such an approach
requires modifications to existing camera construction, while
our method uses only off-the-shelf cameras.

3. Problem Statement and Solution Overview
Let I = {Im}Mm=1 be a set of images taken from M differ-

ent viewpoints at the same time instant. We model each image
as a sum of its underlying noiseless image,Gm, and zero-mean
noise, nm:

Im = Gm + nm. (1)

Our goal is to recover G = {Gm}Mm=1 from I. There are five
major sources of image noise [9]: fixed pattern noise, dark cur-
rent noise, shot noise, amplifier noise, and quantization noise.
Since fixed pattern noise and dark current noise can be pre-
calibrated and quantization noise is usually much smaller than
other noise, we focus on amplifier noise and shot noise and
model the noise variance as

σ2 = τ2 + κG, (2)

where τ2 represents the amplifier noise whose variance is in-
dependent of intensity and κG represents the shot noise whose
variance is proportional to intensity G. We verified this noise
variance model on two camera models, Nikon D50 and Point-
Grey Dragonfly Express,1 shown in Figure 1.

To jointly reduce noise in all input images, we seek to ex-
ploit patch correspondences across different viewpoints using
depth estimation. Let Zm be the depth map for image Im,
which determines the pixel correspondence between Im and
all other images in I. Let Z = {Zm}Mm=1 be the set of depth
maps for all the input images, which is unknown and needs
to be estimated from I. It is well understood in stereo vision
that depth estimation is often ambiguous in practice [12] and
the true depth map is challenging to compute. With this fact
in mind, we formulate the multi-view denoising problem by
taking into account a family of likely depth solutions. Specifi-
cally, we consider the conditional probability of noiseless im-
ages G given noisy input images I, marginalizing over all pos-
sible depth hypothesis:

P(G|I) =
∫
Z

P(G,Z|I) =
∫
Z

P(G|Z, I)P(Z|I). (3)

To estimate G, we have two choices: Maximum Likelihood
(ML) solution Ĝ = argG max P(G|I) and conditional mean
solution Ĝ = EP(G|I)(G|I). For either choice, an analytical
solution is hard to find. We note however that the last term
in Eq. (3), P(Z|I), is the probability of depth maps Z given
input images I and many formulations have been proposed
for it in stereo matching literature [18]. We can sample depth
maps based on P(Z|I) and then approximate P(G|I) using the
sampled depth maps. For example, given a sample of depth
maps, Zi, we can use it to jointly denoise all the input images,
therefore, generating a sample of noiseless images Gi. After
a sequence of depth samples, we can compute a weighted av-
erage of all Gi as the approximate conditional mean solution.

1The noise model in Eq. (2) assumes linear camera response; the two cam-
eras we used have near-linear response and do not require pre-linearization.



Ĝ =
∫
G,Z

GP(G,Z|I) ≈
∑
Gi,Zi

GiP(Gi|Zi, I)P(Zi|I). (4)

A special case of Eq. (4) is to take only a single sample for
Z , e.g., the ML solution of P(Z|I), and then use it to denoise
the input images. We report our results using both ML depth
estimation and random depth sampling.

Computing depth maps from a set of input images is not a
contribution of this paper; we use the simple window matching
to compute or sample depth maps [16]. Next, we present our
multi-view denoising method using the depth maps.

4. Depth-Guided Multi-View Image Denoising
In this section, we present a novel method for denoising

multi-view images given depth map estimation. Leveraging
multi-view data, our method addresses two key challenges
in single image denoising. First, multi-view images provide
more measurements for noise cancelation, thereby enabling
denoising patches that are non-repetitive within a single im-
age. Second, we use depth-induced constraints among differ-
ent views during patch matching, thereby improving the patch
grouping accuracy in the presence of large noise.

4.1. Joint Multi-View Patch Matching
Given multiple images, we choose one of them as a refer-

ence image, I1 for example.2 Consider one image patch bp
(say 8x8) centered at pixel p in the reference image. We call
this patch a reference patch. To denoise this reference patch,
we search for patches that are similar to bp in all the input
images, including the reference image itself.

One way to achieve this goal is to compare the reference
patch to all other patches, using a distance metric such as L2
norm. Such an approach however is susceptible to large im-
age noise, as shown in Figure 2(a,b). The inaccuracy in patch
grouping lowers the performance of image denoising.

In practice, perfect patch matching is unobtainable as the
noiseless image is unknown. However, we can improve the ac-
curacy of patch matching using multi-view images as follows.
When deciding whether a patch A1 is similar to a patch B1 in
the reference image I1, we find their corresponding patchesA2

and B2, respectively, in the second image I2 using the depth
map. If A1 is similar to B1, A2 should also be similar to B2.
Additionally, if we have more views, we have more measure-
ments to verify whether A1 and B1 in the reference view are
indeed similar.

Specifically, we compute the similarity measure between
patches bp and bq at locations p and q in the reference view
as follows. We sum up the distances between patch pairs in all
views that correspond to bp and bq:

Φ(bp,bq) =
M∑
m=1

‖bWm(p) − bWm(q)‖2, (5)

2We use the notion of reference image to facilitate algorithm description.
Our method is able to symmetrically denoise all input images.

(a) (b) (c)
Figure 2. Comparison between patch grouping using a single im-
age versus multiple images. (a) The green patches are the closest
K = 35 patches to the reference patch (shown in red) in a clean
image. (b) After the image is corrupted by noise with standard de-
viation τ = 65, for the same reference patch, the closest K = 35
patches are scattered around, and do not correspond to the closest
patches that would be found in the clean image. (c) Using 25 noisy
images taken from multiple viewpoints (only one shown here), the
K = 35 closest patches to the same reference patch better resemble
those in (a). In short, depth-guided multi-view patch matching im-
proves patch grouping accuracy in the presence of large noise. The
patches are best viewed electronically in color.

where Wm(p) is the warped location of pixel p from the refer-
ence image I1 to image Im using its depth, and bWm(p) is the
patch centered at Wm(p) in image Im. Under this notation,
W1(·) is the identity warp for the reference image I1 itself.

Using Φ(bp,bq) in Eq. (5) as a metric, we can select K
most similar patch locations for each patch in the reference
image. After warping these K locations to all other M − 1
views, we collect a group of KM similar patches for noise
reduction. Figure 2(c) shows an example of this method.

4.2. Joint Multi-View Patch Denoising
Given the KM patches {bq}KMq=1 with similar underlying

image structures, we now seek to remove their noise. Let the
size of each patch be S × S = D; We treat each patch bq as a
D-dimensional vector.3 We explore two methods for denois-
ing: PCA and tensor analysis.
4.2.1 Patch Denoising using PCA
Since all the patches in the set have similar underlying image
structures, we assume that their noiseless patches lie in a low
dimensional subspace, centered at u0 and spanned by bases
{ud}Cd=1. Let b̂q be the noiseless patch for patch bq:

b̂q = u0 +
C∑
d=1

udfq,d, (6)

where fq,d is the coefficient of patch b̂q along basis ud.
We estimate the subspace by minimizing the difference be-

tween noisy patches and denoised patches:
KM∑
q=1

‖bq − b̂q‖2σ, (7)

where ‖x‖2σ =
D∑
i=1

x2
i

σ2
i

is an element-wise variance-normalized

L2 norm that accounts for the intensity-dependent noise. We
3For color images, we treat each patch as a 3D-dimensional vector.
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Figure 3. Illustration of eigenvalues for different collections of
patches. (a) we show a reference patch in red and its 35 most similar
patches in green. The eigenvalues for this set of patches is shown in
the inset. Since this collection of patches is on the bust, the residual
patches after mean removal approximately correspond to noise. The
eigenvalues therefore correspond to noise power along the compo-
nents. (b) The reference patch contains an intensity edge. The top
component captures the subtle variation of these edge patches. The
rest of the small eigenvalues correspond to noise power along these
components. (c) The reference patch has an irregular intensity pattern
and more components are needed to capture patch variation within the
collection. We propose an automatic way of determining the number
eigenvectors for patch denoising (Section 4.2.1). The patches are
best viewed electronically in color.

approximate σ2
i as σ2

i = τ2 + κ[u0]i, where [u0]i is the inten-
sity for pixel i in the patch u0.

In Eq. (7), if all σi are the same, the subspace can be di-
rectly computed using SVD.In the presence of varying σi, we

first compute the mean patch u0 = 1
KM

KM∑
q=1

bq and subtract it

from the input patches to obtain b′q = bq − u0. Afterward,
for each b′q , we multiply its i’th element by 1

σi
. Then we

apply SVD on the matrix B′ = [b′1,b
′
2, · · · ,b′KM ] to com-

pute C bases {u′d}Cd=1. Note that these bases are for {b′q} but
not for {bq}. Finally, we obtain the subspace bases {ud}Cd=1

by multiplying each u′d with [σ1, σ2, · · · , σD] element-wise.
Once we have the subspace bases, the denoised patch b̂q is
computed using Eq. (6). We remark that our minimization of
Eq. (7) is provably optimal if we approximately evaluate per-
pixel noise variance using the mean image patch. Without this
approximation, the optimization is nonlinear and needs an it-
erative solution.
Finding Dimensionality C In practice, we need to deter-
mine the subspace dimension C. One choice is to use a fixed
value, e.g., C = 1. However, different groups of patches re-
quire different numbers of principal components for best re-
construction, as shown in Figure 3. In general, too many com-
ponents tend to introduce noise in the results and too few com-
ponents tend to over-smooth the results.

We propose a new way of choosing the dimension of the
subspace for each patch stack that is adaptive to the underly-

ing image structure. Our basic idea is that if we choose the
right dimension for the subspace, the average squared resid-
uals between noisy patches and denoised patches should be
very close to the the noise variance. Recall that we have KM
patches, each having D pixels, and the average residual errors
(scaled by variance) is

1
KMD

KM∑
q=1

‖bq − b̂q‖2σ =
1

KMD

D∑
d=C+1

λ2
d, (8)

where {λd}Dd=1 are the singular values of the matrix B′. We
therefore look for C such that Eq. (8) is closest to 1. Since
Eq. (8) monotonically increases as C decreases from D to 1, a
binary search can be used to quickly find an optimal C.

4.2.2 Patch Denoising using Tensor Analysis
Inspired by its successful application in modeling tex-
tures [21], we have also explored using tensor analysis for
patch denoising. Specifically, rather than stacking patches
from different images in a single matrix, we put patches from
the same image in a stack, and view the patches from multiple
images as a multi-dimensional array. Let this array be B and
[B]i,k,m be the intensity of pixel i in the patch k in the viewm.
Since all the patches are similar, we assume that the underlying
noiseless patch array B̂ lie in a multi-linear subspace centered
at u0 and spanned by bases {ui}Ci=1⊗{vk}Jk=1⊗{wm}Lm=1,
where ui, vk, and wm are the basis vectors for the three
modes: i, k, and m, which is written as

B̂ = u0 ⊕1

C∑
i=1

J∑
k=1

L∑
m=1

fi,k,mui ⊗ vk ⊗wm, (9)

where u0 ⊕1 X means “adding u0 to each mode-1 vector of
the tensor X ”, and fi,k,m is the tensor coefficient.

Similar to the PCA denoising, we estimate this multi-linear
subspace by minimizing the difference between noisy patches
and denoised patches as in Eq. (7), with the exception that
b̂q is computed using Eq. (9), rather than Eq. (6). We follow
the same procedure as PCA denoising to estimate the multi-
linear subspace, except that we replace matrix SVD with ten-
sor SVD [13]. We also apply the same method of choosing
subspace dimension in PCA denoising to each mode of the
tensor SVD separately to determine C, J , and L. We compare
PCA and tensor denoising in Section 5.
4.3. From Denoised Patches to Denoised Images

By applying the patch grouping and patch denoising to each
patch in input images, we can denoise all of them; We now
use the denoised patches to form denoised images. Each pixel
is often covered by several denoised patches. To determine
the value of a particular pixel in a denoised image, we take a
weighted average of denoised patches at this pixel. The weight
reflects our belief in the likelihood that the denoised patch re-
sembles the true underlying noiseless image. Since the de-
noised patch is computed from the PCA or tensor analysis, a
lower dimension of the subspace suggests less image struc-
ture variation in the patch collection and the noise has a better



chance to be canceled out. Therefore, we have experimented
with using 1

C as patch weight for the PCA denoising and 1
CJL

for tensor denoising. We have also experimented with other
weighting choices, such as exp(−‖b− b̂‖2) which favors de-
noised patches that are closer to the original patches. We found
these different choices have comparable performance.

It is worth noting that the depth estimation we use does not
model occlusion explicitly. As a result, for a reference patch
near an occlusion boundary, its patch collection may include
patches from other views that have considerably different in-
tensity pattern. Using a weighting scheme that favors more
compact patch collections helps to reduce artifacts near occlu-
sion boundaries.
5. Experimental Results

We have implemented our method in C++ and evaluated it
on different images. We present only a subset of our results
in the paper. Please refer to our supplemental materials for
additional results. By default, we use M = 25 views, set
patch size to be D = 8 × 8 pixels, and choose a reference
patch for every 4 pixels. For each reference patch, we choose
K = 28 most similar patch locations.
5.1. Input Image Data

Our experiments include images with synthetic noise as
well as real noise. To create an noisy image I from a clean im-
age G, we use I = κpoissrnd(Gκ ) in Matlab, where κ is a
scalar parameter. poissrnd(x) generates a Poisson random
number with mean x and variance x. This operation simulates
the process that incoming light is darkened by a factor of 1

κ ,
recorded by a photoreceptor, and then amplified by a factor of
κ. At the end, I has mean G and variance κG.

We generated synthetic noisy images using two image sets:
Ohta and Tarot Card. Ohta images are from the Middlebury
Stereo website,4 and were taken from a grid of 5x5 viewpoints.
For each image, we added Poisson noise with κ = 38. Tarot
Card images are from Stanford Light Field Archive.5 The orig-
inal data set has 17x17 images, and we used a subset of 5x5
and added noise with κ = 18.

We also captured a sequence of 25 noisy images for a board
with texts and line arts using PointGrey Dragonfly Express
at the highest gain. The camera moves about 5mm between
neighboring images and the scene is approximately 1.5 meters
away from the camera. We use Voodoo software6 to calibrate
the 3D camera path. Please refer to our supplemental ma-
terials for these testing images in full size as well as addi-
tional ones. We only show insets in the paper due to the lack
of space.
5.2. Comparison to Other Denoising Approaches

We first applied our denoising method to the Ohta images
and the Tarot Card images. Figure 4 shows our results, com-
pared with the results generated by BM3D, one of the state-of-

4http://vision.middlebury.edu/stereo/data/
5http://lightfield.stanford.edu/
6http://www.digilab.uni-hannover.de/index.html

Error rate(6.5%) Error rate(2.4%) Ground truth
Figure 6. An application of our multi-view denoising algorithm for
depth estimation. Left: the depth map estimated from the 25 noisy
Ohta images. Middle: the depth map estimated from the 25 denoised
images produced by our denoising algorithm. In both cases, the depth
maps are estimated using graph cuts [11]. Right: the ground truth
depth map. The error rate is defined as the percentage of the pixels
with over one disparity difference compared to the ground truth. The
benefit of using our algorithm for depth estimation is clear.

the-art single image denoising methods [6], and a multi-view
image reconstruction method [20]. Our method substantially
outperforms the other two methods both visually and quanti-
tatively. (PNSR measurements are given in our supplemen-
tal material due to the lack of space.) Note that the improve-
ment of our approach over single image denoising is substan-
tial, much more dramatic than the performance difference be-
tween various state-of-the-art denoising methods evaluated on
a single image. We attribute this performance gain to more
accurate patch grouping and more data for noise cancelation.
We believe our work can inspire the image denoising commu-
nity to design algorithms that can be conveniently extended to
leverage multi-view images for significant performance gain.

We also applied our method to the text board images. Fig-
ure 5 shows our results, compared with the results by BM3D,
and its video denoising extension, VBM3D [5]. Our method
has an clear advantage over these two. This comparison sug-
gests that if patches cannot be accurately grouped over time,
additional image measurements may not contribute signifi-
cantly to the denoising performance.

As an application of our denoising algorithm, we have
tested depth estimation on both noisy and denoised images and
report the results in Figure 6. The benefit of using denoised
images for depth estimation is clear.
5.3. Intensity-Dependent Variance

We have evaluated the effectiveness of modeling intensity-
dependence variance for images with Poisson noise. Us-
ing intensity-dependence variance reduces noise in all regions
without losing details in dark regions, as shown in Figure 7.
5.4. PCA versus Tensor Analysis

We have compared denoising results using PCA versus
Tensor analysis. Both have comparable performance, as
shown in Figure 8. Tensor denoising yields smoother results
because it tends to treat appearance variation across view-
points due to occlusion or reflectivity as noise, while PCA is
more flexible to preserve these variations.
5.5. How Many Views Are Enough?

Figure 9 illustrates the performance of our approach as a
function of the number of input views. The performance is



Noisy patch Dabov et al. [6] Vaish et al. [20] Our method (PCA) Ground truth
Figure 4. Comparison between our 25-view denoising and a state-of-the-art single image denoising (Dabov et al. [6] applied on one image) and
an existing multi-view denoising (Vaish et al. [20] applied on all 25 images). (Best viewed electronically in color.)

measured in terms of peak signal-to-noise ratio (PSNR). It
steadily improves as the number of views increases till 15-20,
after which it flattens. The cause for this phenomena remains
an open question for future study.
5.6. Optimizing versus Sampling Depth Maps

All our results presented so far use only a single depth map,
which is computed with a window-based winner-take-all ap-
proach [16]. We have also experimented with using randomly
sampled depth maps for denoising. When sampling for a depth
map, we assume that depth for each pixel is independent and
use the window-based stereo matching cost to compute depth
distribution. Specifically, the probability that pixel p has depth
z is

P(z) ∝ exp(−
M∑
m=2

‖bp − bWm(p)‖2σ) (10)

where Wm(p) is the warped location of pixel p from image 1
to image m using depth z, and bWm(p) is the patch centered at

Wm(p) in imagem. Figure 10 shows denoising results using a
sampled depth map. These results are very comparable to our
results in Figure 8, which use window-based winner-take-all
depth estimation.

The similarity between Figure 10 and 8 is because depth
distribution P(z) is highly peaked for patches that have a
unique intensity pattern and is more spread out for ambigu-
ous patches. Taking a solid white image region as an extreme
example, depth sampling has large uncertainty, but any depth
value works equally well for grouping patches in this region
for denoising. We have also tried averaging denoising results
using multiple sampled depth maps, and found that the results
do not differ much from those obtained using a single depth
map. This experiment suggests that imperfect depth estima-
tion can be good enough for multi-view image denoising. How
to rigourously aggregate different denoising results using sam-



Noisy patch Dabov et al. [6] Dabov et al. [5] Our method (Tensor) Ground truth
Figure 5. Comparison between our 25-view denoising and a state-of-the-art single image denoising (Dabov et al. [6] applied on one image) and
its extension to video denoising (Dabov et al. [5] applied on all 25 images as a video sequence). (Best viewed electronically.)

Noisy patch σ ≡ 50 σ ≡ 98 σ2 = 38G Ground truth

Noisy patch σ ≡ 50 σ ≡ 68 σ2 = 18G Ground truth
Figure 7. Comparison of multi-view denoising for images with Poisson noise using a fixed variance versus an intensity-dependent variance.
Using a small and fixed noise variance keeps image details but is unable to reduces large noise over bright regions. Using a large and fixed noise
variance reduces noise in all regions but over-smoothes the details in the dark regions. Using intensity-dependent variance reduces noise in all
regions without losing details in dark regions. (Best viewed electronically in color.)

pled depth maps remains a theoretic question for future study.

6. Discussion and Future Work
In this paper, we cast multi-view pinhole imaging as a

multi-view denoising problem and seek to restore all the pin-
hole images by jointly removing noise in different viewpoints.
We believe our work opens several interesting venues for fu-
ture work. First, our current method does not model occlusion
between different views. This has not generated very objec-
tionable artifacts in the results, due to the weighting scheme in
Section 4.3. However, in the Ohta example, we do see a small

amount of color bleeding of the red lamp arm into the back-
ground poster board. We believe that adopting robust PCA
or tensor analysis to patch denoising will address this issue.
Second, our current implementation does not consider patch
deformation when matching patches across views. An affine
transformation model with subpixel matching will improve the
performance of our algorithm. Third, it is intriguing to note
that our performance curve flattens after 15-20 views. We
would like to design algorithms that always benefit from more
input views. Last, we are interested in more principled ways



Our method (PCA) Our method (Tensor) Ground truth
Figure 8. Comparison between patch denoising using PCA versus
tensor analysis. Both have comparable performance.
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Figure 9. The performance of our multi-view denoising as a func-
tion of the number of input views. The performance improves as the
number of views increases till 20, after which it flattens.

Figure 10. Our multi-view image denoising using depth maps ran-
domly sampled from the depth distribution of Eq. (10). These results
are very comparable to those in the left column of Figure 8. This
experiment suggests that imperfect depth maps due to matching am-
biguity can be used to generate good denoising results.

of using depth map sampling for multi-view denoising, for ex-
ample, using MRF to define global depth map probability, and
aggregating multiple denoising results more rigorously.
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