4 research outputs found

    Enumerative geometry of Calabi-Yau 4-folds

    Full text link
    Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 4-folds. The main technique is to find exact solutions to moving multiple cover integrals. The resulting invariants are analogous to the BPS counts of Gopakumar and Vafa for Calabi-Yau 3-folds. We conjecture the 4-fold invariants to be integers and expect a sheaf theoretic explanation. Several local Calabi-Yau 4-folds are solved exactly. Compact cases, including the sextic Calabi-Yau in CP5, are also studied. A complete solution of the Gromov-Witten theory of the sextic is conjecturally obtained by the holomorphic anomaly equation.Comment: 44 page

    An Updated Description of Heavy-Hadron Interactions in Geant-4

    Get PDF
    Exotic stable massive particles (SMP) are proposed in a number of scenarios of physics beyond the Standard Model. It is important that LHC experiments are able both to detect and extract the quantum numbers of any SMP with masses around the TeV scale. To do this, an understanding of the interactions of SMPs in matter is required. In this paper a Regge-based model of R-hadron scattering is extended and implemented in Geant-4. In addition, the implications of RR-hadron scattering for collider searches are discussed

    The ultra-violet question in maximally supersymmetric field theories

    Get PDF
    We discuss various approaches to the problem of determining which supersymmetric invariants are permitted as counterterms in maximally supersymmetric super Yang--Mills and supergravity theories in various dimensions. We review the superspace non-renormalisation theorems based on conventional, light-cone, harmonic and certain non-Lorentz covariant superspaces, and we write down explicitly the relevant invariants. While the first two types of superspace admit the possibility of one-half BPS counterterms, of the form F4F^4 and R4R^4 respectively, the last two do not. This suggests that UV divergences begin with one-quarter BPS counterterms, i.e. d2F4d^2 F^4 and d4R4d^4 R^4, and this is supported by an entirely different approach based on algebraic renormalisation. The algebraic formalism is discussed for non-renormalisable theories and it is shown how the allowable supersymmetric counterterms can be determined via cohomological methods. These results are in agreement with all the explicit computations that have been carried out to date. In particular, they suggest that maximal supergravity is likely to diverge at four loops in D=5 and at five loops in D=4, unless other infinity suppression mechanisms not involving supersymmetry or gauge invariance are at work.Comment: 56 pages, 1 figure, uses youngtab.sty. Contribution to the proceedings of the W.E. Heraeus Workhop "Quantum Gravity: Challenges and Perspectives", Bad Honnef, 14-16 April 2008. References and clarifying comments adde
    corecore