129 research outputs found

    RS1, Custodial Isospin and Precision Tests

    Full text link
    We study precision electroweak constraints within a RS1 model with gauge fields and fermions in the bulk. The electroweak gauge symmetry is enhanced to SU(2)_L \times SU(2)_R \times U(1)_{B-L}, thereby providing a custodial isospin symmetry sufficient to suppress excessive contributions to the T parameter. We then construct complete models, complying with all electroweak constraints, for solving the hierarchy problem, without supersymmetry or large hierarchies in the fundamental couplings. Using the AdS/CFT correspondence our models can be interpreted as dual to a strongly coupled conformal Higgs sector with global custodial symmetry, gauge and fermionic matter being fundamental fields external to the CFT. This scenario has interesting collider signals, distinct from other RS models in the literature.Comment: 32 pages, 6 figures, latex2e, minor changes, references adde

    The Effective Lagrangian in the Randall-Sundrum Model and Electroweak Physics

    Full text link
    We consider the two-brane Randall-Sundrum (RS) model with bulk gauge fields. We carefully match the bulk theory to a 4D low-energy effective Lagrangian. In addition to the four-fermion operators induced by KK exchange we find that large negative S and T parameters are induced in the effective theory. This is a tree-level effect and is a consequence of the shapes of the W and Z wave functions in the bulk. Such effects are generic in extra dimensional theories where the standard model (SM) gauge bosons have non-uniform wave functions along the extra dimension. The corrections to precision electroweak observables in the RS model are mostly dominated by S. We fit the parameters of the RS model to the experimental data and find somewhat stronger bounds than previously obtained; however, the standard model bound on the Higgs mass from precision measurements can only be slightly relaxed in this theory.Comment: 16 pages, LaTeX, 1 figure included, uses JHEP.cls, extended introduction, added reference

    Predictive Value of Ov16 Antibody Prevalence in Different Subpopulations for Elimination of African Onchocerciasis

    Get PDF
    The World Health Organization currently recommends assessing elimination of onchocerciasis by testing whether Ov16 antibody prevalence in children aged 0-9 years is below 0.1%. However, the certainty of evidence for this recommendation is considered to be low. We used the established ONCHOSIM model to investigate the predictive value of different Ov16-antibody prevalence thresholds in various age groups for elimination of onchocerciasis in a variety of endemic settings and for various mass drug administration scenarios. According to our simulations, the predictive value of Ov16 antibody prevalence for elimination depends highly on the precontrol epidemiologic situation, history of mass drug administration, the age group that is sampled, and the chosen Ov16-antibody prevalence threshold. The Ov16 antibody prevalence in children aged 5-14 years performs best in predicting elimination. Appropriate threshold values for this age group start at 2.0% for very highly endemic areas; for lower-endemic areas, even higher threshold values are safe to use. Guidelines can be improved by sampling school-aged children, which also is operationally more feasible than targeting children under age 10 years. The use of higher threshold values allows sampling of substantially fewer children. Further improvement can be achieved by taking a differentiated sampling approach based on precontrol endemicity

    Recognize fish as food in policy discourse and development funding

    Get PDF
    The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The formation of YBa2Cu3O7-x in melt-texture heat treatments

    No full text
    A study of the bulk formation of YBa2Cu3O7-x from the Y2BaCuO5 plus liquid regime reveals that phase formation occurs at appreciable rates below 950°C in air. This result has been observed for phase-pure YBa2Cu3O7-x starting material given two types of heat treatment: held at 1100°C and slow-cooled from 1030°C at 6°C/h or heat-treated isothermally. Differential thermal analysis, with a cooling rate of 10°C/min indicates that the degree of undercooling for the peritectic formation of YBa2Cu3O7-x is greater than 100°C. © 1994
    • …
    corecore