5 research outputs found

    A natural product inhibits the initiation of a-synuclein aggregation & suppresses its toxicity

    Get PDF
    The self-Assembly of a-synuclein is closely associated with Parkinson''s disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects a-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces a-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of a-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing a-synuclein, observing a dramatic reduction of a-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson''s disease and related conditions

    Multistep Inhibition of α-Synuclein Aggregation and Toxicity in Vitro and in Vivo by Trodusquemine

    Get PDF
    12 pags, 3 figs. -- The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.8b00466.The aggregation of α-synuclein, an intrinsically disordered protein that is highly abundant in neurons, is closely associated with the onset and progression of Parkinson's disease. We have shown previously that the aminosterol squalamine can inhibit the lipid induced initiation process in the aggregation of α-synuclein, and we report here that the related compound trodusquemine is capable of inhibiting not only this process but also the fibril-dependent secondary pathways in the aggregation reaction. We further demonstrate that trodusquemine can effectively suppress the toxicity of α-synuclein oligomers in neuronal cells, and that its administration, even after the initial growth phase, leads to a dramatic reduction in the number of α-synuclein inclusions in a Caenorhabditis elegans model of Parkinson's disease, eliminates the related muscle paralysis, and increases lifespan. On the basis of these findings, we show that trodusquemine is able to inhibit multiple events in the aggregation process of α-synuclein and hence to provide important information about the link between such events and neurodegeneration, as it is initiated and progresses. Particularly in the light of the previously reported ability of trodusquemine to cross the blood-brain barrier and to promote tissue regeneration, the present results suggest that this compound has the potential to be an important therapeutic candidate for Parkinson's disease and related disorders.This work was supported by the Boehringer Ingelheim Fonds (P.F.), the Studienstiftung des Deutschen Volkes (P.F.), Gates Cambridge Scholarships (R.L. and G.T.H) and a St. John’s College Benefactors’ Scholarship (R.L.), the UK Biotechnology and Biochemical Sciences Research Council (M.V. and C.M.D.), a Senior Research Fellowship award from the Alzheimer’s Society, UK, grant number (317, AS-SF-16-003) (F.A.A.), the Wellcome Trust (C.M.D., M.V., and T.P.J.K.), the Frances and Augustus Newman Foundation (T.P.J.K.), the Regione Toscana—FAS Salute—Supremal project (R.C., C.C., and F.C.), a Marie Skłodowska-Curie Actions—Individual Fellowship (C.G.), Sidney Sussex College Cambridge (G.M.), the Spanish Government—MINECO (N.C.), and by the Cambridge Centre for Misfolding Diseases (M.P., P.F., R.L., F.A.A., C.G., G.T.H., S.W.C., J.R.K., T.P.J.K., M.V., and C.M.D)
    corecore