50 research outputs found

    Dynamics of a deformable self-propelled particle under external forcing

    Full text link
    We investigate dynamics of a self-propelled deformable particle under external field in two dimensions based on the model equations for the center of mass and a tensor variable characterizing deformations. We consider two kinds of external force. One is a gravitational-like force which enters additively in the time-evolution equation for the center of mass. The other is an electric-like force supposing that a dipole moment is induced in the particle. This force is added to the equation for the deformation tensor. It is shown that a rich variety of dynamics appears by changing the strength of the forces and the migration velocity of self-propelled particle

    The Physics of the B Factories

    Get PDF

    Cluster binding studies with two anti-Thomsen-Friedenreich (anti-core-1, CD176, TF) antibodies: evidence for a multiple TF epitope

    No full text
    Antibodies to carbohydrate epitopes are often of the IgM isotype and require multiple binding for sufficient avidity. Therefore clusters of epitopes are preferred antigenic sites in these cases. We have examined the type of clusters recognized by two anti-Thomsen-Friedenreich (TF, core-1, CD176) IgM antibodies, NM-TF1 and NM-TF2, using several different sets of TF-carrying synthetic glycoconjugates in ELISA experiments. To our surprise, the single most important factor determining binding strength was a close vicinity of several TF glycans at distances of ≤1 nm. Considering the known dimensions of IgM antibodies, our data strongly suggest that a cluster of up to four TF moieties, presenting as a "multiple epitope", is required to attach to a single combining site in order to result in adequate binding strength. This effect can also be achieved by "surrogate-multiple epitopes" consisting of separate TF-carrying molecules in close vicinity. In addition, it was found that serine-linked TFs are stronger bound than threonine-linked TFs by both antibodies. This peculiar type of cluster recognition may contribute to improved avidity and explicit tumor specificity

    Cytopede: A Three-Dimensional Tool for Modeling Cell Motility on a Flat Surface

    No full text
    When cultured on flat surfaces, fibroblasts and many other cells spread to form thin lamellar sheets. Motion then occurs by extension of the sheet at the leading edge and retraction at the trailing edge. Comprehensive quantitative models of these phenomena have so far been lacking and to address this need, we have designed a three-dimensional code called Cytopede specialized for the simulation of the mechanical and signaling behavior of plated cells. Under assumptions by which the cytosol and the cytoskeleton are treated from a continuum mechanical perspective, Cytopede uses the finite element method to solve mass and momentum equations for each phase, and thus determine the time evolution of cellular models. We present the physical concepts that underlie Cytopede together with the algorithms used for their implementation. We then validate the approach by a computation of the spread of a viscous sessile droplet. Finally, to exemplify how Cytopede enables the testing of ideas about cell mechanics, we simulate a simple fibroblast model. We show how Cytopede allows computation, not only of basic characteristics of shape and velocity, but also of maps of cell thickness, cytoskeletal density, cytoskeletal flow, and substratum tractions that are readily compared with experimental data
    corecore