17 research outputs found

    Physical research of microgravity influence on physical phenomenon in cryogenic liquids and general-purpose onboard cryogenic facility for realization of this researchaboard International Space Station

    No full text
    The united research plan named "Boiling" is created on the basis of several cryogenic research projects developed by experts in Russia and Ukraine for International Space Station. The "Boiling" plan includes 8 first experiments aimed at investigating the influence of microgravity on boiling processes, heat transfer and hydrodynamics in liquid helium being either under normal or superfluid conditions. The experiments are supposed to be carried out with individual cells collected inside a single cryogenic onboard experimental facility. The international research program experiments are characterized by the following features: utilization of several artificially simulated microgravity levels, owing to rotation of the experimental helium cryostat; visualization of the processes that occur in liquid helium; research of boiling and hydrodynamics both in a large volume of stationary liquid, and in a liquid flow running through a channel. Upon completion of the "Boiling" research plan, the cryogenic onboard facility created for International Space Station would be able to find its application in further scientific and experimental researches with helium

    Research of the passage of mode pulses in a waveguide with a one-dimensional diffractiongrade

    No full text
    Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ прохоТдСния ΠΌΠΎΠ΄ΠΎΠ²Ρ‹Ρ… ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² Π² Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π΅ с ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠΎΠΉ. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚ΡΡ дифракция Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ излучСния ΠΈ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° Π½Π° Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ΅ с ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠΌ порядка Π΄Π»ΠΈΠ½Ρ‹ Π²ΠΎΠ»Π½Ρ‹ Π² Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠ΄Π΅ с ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌΠΈ стСнками. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ диффСрСнцирования ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ Гауссова ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ модСлирования для косинусного сигнала с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… разностСй Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ области (FDTD) Π² свободно распространяСмом ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ обСспСчСнии MEEP. In this paper, we simulate the propagation of mode pulses in a waveguide with a one-dimensional lattice. The diffraction of continuous radiation and a short pulse on a grating with a period of wave processing in a waveguide with reflecting walls is investigated. The possibility of differentiating the reflected short Gaussian pulse is reported. Simulation results for the cosine signal are presented using the FDTD method in freely distributed MEEP software.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ агСнтства Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ (соглашСниС No 007-Π“Π—/Π§3363/26)

    Catastrophe theory and caustics of radially symmetric beams

    No full text
    Π Π°Π±ΠΎΡ‚Π° посвящСна исслСдованию каустик Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‡ΠΊΠΎΠ². НайдСны аналитичСскиС выраТСния для каустичСских повСрхностСй Π²ΠΎΠ»Π½ΠΎΠ²Ρ‹Ρ… Ρ„Ρ€ΠΎΠ½Ρ‚ΠΎΠ², создаваСмых Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎ-симмСтричными Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ оптичСскими элСмСнтами. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ прСдставлСн Π² ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, согласованной с каустичСской ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ асимптотичСскоС прСдставлСниС ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π° ΠšΠΈΡ€Ρ…Π³ΠΎΡ„Π° Π²Π±Π»ΠΈΠ·ΠΈ оптичСской оси, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π΅ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΡΡ‚ΡŒ расчСтов Π² Π½Π΅ΠΏΠ°Ρ€Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½ΠΎΠΌ случаС. The work is devoted to the study of the caustics of radial beams. Analytical expressions for caustic surfaces of wave fronts created by radially symmetric diffractive optical elements are found. The result is presented in a curvilinear coordinate system consistent with the caustic surface. An asymptotic representation of the Kirchhoff integral near the optical axis is obtained, ensuring the correct calculations in the non-paraxial case.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ финансовой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Российского Ρ„ΠΎΠ½Π΄Π° Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований (Π³Ρ€Π°Π½Ρ‚ β„– 18-29-20045-ΠΌΠΊ) Π² части числСнного модСлирования ΠΈ ΠœΠΈΠ½ΠΈΡΡ‚Π΅Ρ€ΡΡ‚Π²Π° Π½Π°ΡƒΠΊΠΈ ΠΈ Π²Ρ‹ΡΡˆΠ΅Π³ΠΎ образования Π Π€ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… выполнСния Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ ГосударствСнному заданию ЀНИЦ Β«ΠšΡ€ΠΈΡΡ‚Π°Π»Π»ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ ΠΈ Ρ„ΠΎΡ‚ΠΎΠ½ΠΈΠΊΠ°Β» РАН (соглашСниС β„– 007-Π“Π—/Π§3363/26) Π² части тСорСтичСских Π²Ρ‹ΠΊΠ»Π°Π΄ΠΎΠΊ

    Modeling of arrangement tolerances for the optical elements in a spaceborne Offner imaging hyperspectrometer

    No full text
    ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ матСматичСский Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования изобраТСния Π² плоскости рСгистратора гипСрспСктромСтра ΠΏΠΎ схСмС ΠžΡ„Ρ„Π½Π΅Ρ€Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ условныС допуски Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ элСмСнтов спСктромСтра. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ модСлирования совмСстного дСйствия ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ ΡƒΠ΄Π°Ρ‡Π½ΠΎΠΉ сборки гипСрспСктромСтра с соблюдСниСм Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ качСству изобраТСния Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ мСньшС 0,9.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ частичной ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Π³Ρ€Π°Π½Ρ‚ΠΎΠ² РЀЀИ β„– 16-29-11744, β„– 16-29-09528 ΠΈ государствСнного задания ИБОИ РАН (соглашСниС β„– 007-Π“Π—/43363/26)

    Calculation of the band structure of a nonchiral semiconductor and metallic carbon nanotubes

    No full text
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… присоСдинСнных цилиндричСских Π²ΠΎΠ»Π½. Для построСния базисных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ элСктронный ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» бСрСтся сфСричСски симмСтричным Π² Π°Ρ‚ΠΎΠΌΠ½Ρ‹Ρ… областях, постоянным Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΉ области ΠΈ цилиндричСски симмСтричным Π² Π²Π°ΠΊΡƒΡƒΠΌΠ½Ρ‹Ρ… областях. БазисныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ ΠΈΠ· Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ равнСния Π¨Ρ€Π΅Π΄ΠΈΠ½Π³Π΅Ρ€Π° Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… областях, ΡΡˆΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ… МВ-сфСр ΠΈ цилиндричСских повСрхностях Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ, образуя Π²ΡΡŽΠ΄Ρƒ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Для Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ расчСты Π·ΠΎΠ½Π½ΠΎΠΉ структуры Π½Π΅Ρ…ΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΈ мСталличСской одностСнных ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ. We proposed a new formalism of the method of linearized attached cylindrical waves. For the construction of basis functions, the electron potential is taken to be spherically symmetric in atomic regions, constant in the intermediate region and cylindrically symmetric in the vacuum regions. The basic functions of the method, obtained from the solution of the SchrΓΆdinger equation in the corresponding domains, are sewn on the boundaries of the MT spheres and the cylindrical surfaces of the tube, forming everywhere continuous differentiable functions. For the approbation of the method, the band structure of the nonchiral semiconductor and metallic single-walled carbon nanotubes was calculated.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ агСнтства Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ (соглашСниС No 007-Π“Π—/Π§3363/26) ΠΈ Российского Ρ„ΠΎΠ½Π΄Π° Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований (РЀЀИ), Π³Ρ€Π°Π½Ρ‚Ρ‹ NoNo 16-29-09528, 16-29-11744

    Simulation of the interaction of electrons and photons in grapheme in the strong coupling approaimation

    No full text
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° аналогия ΠΌΠ΅ΠΆΠ΄Ρƒ описаниСм взаимодСйствия спина Π² ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ ΠΈ элСктрона Π² дираковском ΠΌΠ΅Ρ‚Π°ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ эти явлСния ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈ Ρ‚Π΅ΠΌΠ΅ ΠΆΠ΅ уравнСниями. НаличиС сильного элСктромагнитного поля ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ измСнСнию спСктра носитСлСй заряда Π² дираковском ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅. ВзаимодСйствиС Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ-поляризованного поля с элСктронами Π² дираковском ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ. Ось Π°Π½ΠΈΠ·ΠΎΡ‚Ρ€ΠΎΠΏΠΈΠΈ совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ элСктричСского поля Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ- поляризованной Π²ΠΎΠ»Π½Π΅. An analogy between the description of the interaction of a spin in an alternating magnetic field and an electron in a Dirac metamaterial has been drawn. It is obtained that these phenomena are described by the same equations. The presence of a strong electromagnetic field leads to a change in the spectrum of charge carriers in the Dirac material. The interaction of a linearly polarized field with electrons in a Dirac material leads to anisotropy. The anisotropy axis coincides with the direction of the electric field in a linearly polarized wave

    Optimization, fabrication and characterization of a binary subwavelength cylindrical terahertz lens

    No full text
    A problem of optimizing the subwavelength microrelief of a binary cylindrical transmissive diffractive lens (DL) with a 300-mm focal length for a wavelength of Ξ»=141 ΞΌm was considered. High-resistivity silicon was chosen as the DL substrate material. The angle of incidence of the illuminating beam was taken to be Ο€/6. The optimization parameters were the height of the DL profile and the fill factor of the groove. The main goal of optimizing the design was to increase the diffraction efficiency of the lens. The DL diffraction efficiency was calculated using a Fourier mod method. The DL was fabricated by plasma-chemical etching (Bosch process) of the surface of a silicon substrate. The diffraction efficiency of the calculated lens was estimated to be 70%. However, a full-scale experiment showed the real efficiency to be much lower. These differences are related to both errors in the manufacturing process of the DL and non-ideal thickness parameters of the silicon wafers

    Simulation of the carbon nanotubes band structure on a supercomputer based with ab initio methods

    No full text
    Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π½ΠΎΠ²Ρ‹ΠΉ Ρ„ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π»ΠΈΠ½Π΅Π°Ρ€ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… присоСдинСнных цилиндричСских Π²ΠΎΠ»Π½. Для построСния базисных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ элСктронный ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» бСрСтся сфСричСски симмСтричным Π² Π°Ρ‚ΠΎΠΌΠ½Ρ‹Ρ… областях, постоянным Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΉ области ΠΈ цилиндричСски симмСтричным Π² Π²Π°ΠΊΡƒΡƒΠΌΠ½Ρ‹Ρ… областях. БазисныС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Π΅ ΠΈΠ· Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ уравнСния Π¨Ρ€Π΅Π΄ΠΈΠ½Π³Π΅Ρ€Π° Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… областях, ΡΡˆΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ… МВ-сфСр ΠΈ цилиндричСских повСрхностях Ρ‚Ρ€ΡƒΠ±ΠΊΠΈ, образуя Π²ΡΡŽΠ΄Ρƒ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Для Π°ΠΏΡ€ΠΎΠ±Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ расчСты Π·ΠΎΠ½Π½ΠΎΠΉ структуры Π½Π΅Ρ…ΠΈΡ€Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠΉ (10,0) ΠΈ мСталличСской (6,6) одностСнных ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½Ρ‹Ρ… Π½Π°Π½ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΠΊ. We proposed a new formalism. For the construction of basis functions, the electron potential is taken to be spherically symmetric in atomic regions, constant in the intermediate region and cylindrically symmetric in the vacuum regions. The basic functions of the method obtained from the solution of the SchrΓΆdinger equation in the corresponding domains, are sewn on the boundaries of the MT spheres and the cylindrical surfaces of the tube, forming everywhere continuous differentiable functions. For the approbation of the method, calculations were made of the band structure of the nonchiral semiconductor (10.0) and metallic (6.6) single-walled carbon nanotubes.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ агСнтства Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ (соглашСниС No 007-Π“Π—/Π§3363/26) ΠΈ Π³Ρ€Π°Π½Ρ‚ΠΎΠ² Российского Ρ„ΠΎΠ½Π΄Π° Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований (РЀЀИ) No16-29-09528 ΠΈ No16-29-11744
    corecore