14 research outputs found

    Histopathological analysis and in situ localisation of Australian tiger snake venom in two clinically envenomed domestic animals

    Get PDF
    Objective: To assess histopathological changes in clinically envenomed tiger snake patients and identify tissue specific localisation of venom toxins using immunohistochemistry. Samples: One feline and one canine patient admitted to the Murdoch Pet Emergency Centre (MPEC), Murdoch University with tiger snake (Notechis sp.) envenoming. Both patients died as a result of envenomation. Non-envenomed tissue was also collected and used for comparison. Methodology: Biopsy samples (heart, lung, kidney andskeletal muscle tissue) were retrieved 1-2 h post death and processed for histopathological examination using Haemotoxylin and Eosin, Martius Scarlet Blue and Periodic Acid Schiff staining. Tissues were examined by light microscopy and tissue sections subjected to immunohistochemical staining using in-house generated monoclonal and polyclonal antibodies against Notechis venoms. Results: Venom-induced pathological changes were observed in the lungs, kidneys and muscle tissue of both patients. Evidence, not previously noted, of procoagulant venom effects were apparent, with formed thrombi in the heart, lungs (small fibrillar aggregates and larger, discrete thrombi) and kidneys. Immunohistochemical assays revealed venom present in the pulmonary tissue, in and around the glomerular capsule and surrounding tubules in renal tissue and scattered throughout the Gastrocnemius muscle tissue. Conclusion: This work has shown pathological evidence of procoagulant venom activity supporting previous suggestions that an initial thrombotic state occurs in envenomed patients. We have shown that venom toxins are able to be localised to specific tissues, in this case, venom was detected in the lung, kidney and muscle tissues of clinically envenomed animals. Future work will examine specific toxin localisation using monoclonal antibodies and identify if antivenom molecules are able to reach their target tissues

    Immediate-type hypersensitivity drug reactions

    No full text
    Hypersensitivity reactions including anaphylaxis have been reported for nearly all classes of therapeutic reagents and these reactions can occur within minutes to hours of exposure. These reactions are unpredictable, not directly related to dose or the pharmacological action of the drug and have a relatively high mortality risk. This review will focus on the clinical presentation, immune mechanisms, diagnosis and prevention of the most serious form of immediate onset drug hypersensitivity reaction, anaphylaxis. The incidence of drug-induced anaphylaxis deaths appears to be increasing and our understanding of the multiple and complex reasons for the unpredictable nature of anaphylaxis to drugs is also expanding. This review highlights the importance of enhancing our understanding of the biology of the patient (i.e. immune response, genetics) as well as the pharmacology and chemistry of the drug when investigating, diagnosing and treating drug hypersensitivity. Misdiagnosis of drug hypersensitivity leads to substantial patient risk and cost. Although oral provocation is often considered the gold standard of diagnosis, it can pose a potential risk to the patient. There is an urgent need to improve and standardize diagnostic testing and desensitization protocols as other diagnostic tests currently available for assessment of immediate drug allergy are not highly predictive

    Classificazione

    No full text

    Patogenesi

    No full text
    corecore