8 research outputs found

    Density dependence of ion cyclotron emission from deuterium plasmas in the large helical device

    Get PDF
    Ion cyclotron emission (ICE) driven by perpendicular neutral beam-injected (NBI) deuterons, together with the distinctive ICE driven by tangential NBI, have been observed from heliotronā€“stellarator plasmas in the large helical device (LHD). Radio frequency radiation in the lower hybrid range has also been observed Saito K. et al (2018 Plasma Fusion Res. 13 3402043), with frequency dependent on plasma density. Here we focus on recent measurements of ICE from deuterium plasmas in LHD, which show substantial variation in spectral character, between otherwise similar plasmas that have different local density in the emitting region. We analyse this variation by means of first principles simulations, carried out using a particle-in-cell (PIC) kinetic approach. We show, first, that this ICE is driven by perpendicular NBI deuterons, freshly ionised near their injection point in the outer midplane edge of LHD. We find that these NBI deuterons undergo collective sub-AlfvĆ©nic relaxation, which we follow deep into the nonlinear phase of the magnetoacoustic cyclotron instability (MCI). The frequency and wavenumber dependence of the saturated amplitudes of the excited fields determine our simulated ICE spectra, and these spectra are obtained for different local densities corresponding to the different LHD ICE-emitting plasmas. The variation with density of the spectral character of the simulated ICE corresponds well with that of the observed ICE from LHD. These results from heliotronā€“stellarator plasmas complement recent studies of density-dependent ICE from tokamak plasmas in KSTAR Thatipamula S.G. et al (2016 Plasma Phys. Control. Fusion 58 065003); Chapman B. et al (2017 Nucl. Fusion 57 124004), where the spectra vary on sub-microsecond timescales after an ELM crash. Taken together, these results confirm the strongly spatially localised character of ICE physics, and reinforce the potential of ICE as a diagnostic of energetic ion populations and of the ambient plasma

    Distinct stages of radio frequency emission at the onset of pedestal collapse in KSTAR H-mode plasmas

    No full text
    Using a high-speed and broadband radio frequency (RF) (0.1-1 GHz) spectrum analyzer developed on the KSTAR tokamak, it is found that several distinct stages of RF emission appear at the pedestal collapse in high confinement discharges. Comparison with 2D electron cyclotron emission (ECE) images has revealed that each stage is related to the instantaneous condition at the outboard mid-plane edge. First, high-harmonic ion cyclotron emissions (ICE) are intensified with the appearance of a non-modal filamentary perturbation in the edge within several tens of microseconds before the collapse. Then, the RF emission becomes broad toward high-frequency range (<500 MHz) at the burst onset of the non-modal filament. During the pedestal collapse initiated by the filament burst, rapid chirping (1-3 mu s) appear with additional filament bursts. The strong correlation between the RF spectra and the perturbation structure provides important clues on the stability of edge-localized modes and on the ion dynamics in the plasma boundary

    Density dependence of ion cyclotron emission from deuterium plasmas in the large helical device

    No full text
    Ion cyclotron emission (ICE) driven by perpendicular neutral beam-injected (NBI) deuterons, together with the distinctive ICE driven by tangential NBI, have been observed from heliotronā€“stellarator plasmas in the large helical device (LHD). Radio frequency radiation in the lower hybrid range has also been observed Saito K. et al (2018 Plasma Fusion Res. 13 3402043), with frequency dependent on plasma density. Here we focus on recent measurements of ICE from deuterium plasmas in LHD, which show substantial variation in spectral character, between otherwise similar plasmas that have different local density in the emitting region. We analyse this variation by means of first principles simulations, carried out using a particle-in-cell (PIC) kinetic approach. We show, first, that this ICE is driven by perpendicular NBI deuterons, freshly ionised near their injection point in the outer midplane edge of LHD. We find that these NBI deuterons undergo collective sub-AlfvĆ©nic relaxation, which we follow deep into the nonlinear phase of the magnetoacoustic cyclotron instability (MCI). The frequency and wavenumber dependence of the saturated amplitudes of the excited fields determine our simulated ICE spectra, and these spectra are obtained for different local densities corresponding to the different LHD ICE-emitting plasmas. The variation with density of the spectral character of the simulated ICE corresponds well with that of the observed ICE from LHD. These results from heliotronā€“stellarator plasmas complement recent studies of density-dependent ICE from tokamak plasmas in KSTAR Thatipamula S.G. et al (2016 Plasma Phys. Control. Fusion 58 065003); Chapman B. et al (2017 Nucl. Fusion 57 124004), where the spectra vary on sub-microsecond timescales after an ELM crash. Taken together, these results confirm the strongly spatially localised character of ICE physics, and reinforce the potential of ICE as a diagnostic of energetic ion populations and of the ambient plasma.Export citation and abstrac
    corecore