5 research outputs found

    Theory of laser ion acceleration from a foil target of nanometers

    Full text link
    A theory for laser ion acceleration is presented to evaluate the maximum ion energy in the interaction of ultrahigh contrast (UHC) intense laser with a nanometer-scale foil. In this regime the energy of ions may be directly related to the laser intensity and subsequent electron dynamics. This leads to a simple analytical expression for the ion energy gain under the laser irradiation of thin targets. Significantly, higher energies for thin targets than for thicker targets are predicted. Theory is concretized to the details of recent experiments which may find its way to compare with these results.Comment: 22 pages 7 figures. will be submitted to NJ

    Plasma surface dynamics and smoothing in the relativistic few-cycle regime

    No full text
    Efficient production of coherent harmonic radiation from solid targets relies critically on the formation of smooth, short density scalelength plasmas. Recent experimental results (Dromey et al 2009 Nat. Phys. 5 146) suggest, however, that the target roughness on the scale of the emitted harmonic wavelength does not result in diffuse reflection-in apparent contradiction to the Rayleigh criterion for coherent reflection. In this paper we show, for the first time, using analytic theory and 2D PIC simulations, that the interaction of relativistically strong laser pulses with corrugated target surfaces results in a highly effective smoothing of the interaction surface and consequently the generation of highly collimated and temporally confined XUV pulses from rough targets, in excellent agreement with experimental observations

    Controlling the divergence of high harmonics from solid targets: a route toward coherent harmonic focusing

    No full text
    Harmonic generation from relativistically oscillating plasma surfaces formed during the interaction of high contrast lasers with solid-density targets has been shown to be an efficient source of extreme ultraviolet (XUV) and X-ray radiation. Recent work has demonstrated that the exceptional coherence properties of the driving laser can be mirrored in the emitted radiation, permitting diffraction limited performance and attosecond phase locking of the harmonic radiation. These unique properties may allow the coherent harmonic focusing (CHF) of high harmonics generated from solid density targets to intensities on the order of the Schwinger limit of 1029 W cm-2 with laser systems available in the near future [Phys. Rev. Lett. 93, 115002 (2004)] and thus pave the way for unique experiments exploring the nonlinear properties of vacuum on ultra-fast timescales. In this paper we investigate experimentally as well as numerically the prospect of focusing high harmonics under realistic experimental conditions and demonstrate, using particle in cell (PIC) simulations, that precise control of the wavefronts and thus the focusability of the generated harmonics is possible with pre-shaped targets

    Tunable enhancement of high harmonic emission from laser solid interactions

    No full text
    Coherent wake emission is a unique source of extreme ultraviolet radiation and has been recently shown to provide the basis for intense attosecond light. Here we present a novel scheme, supported by particle-in-cell simulations, demonstrating that enhancement and spectral control of the coherent wake emission signal can be achieved by modifying the interaction plasma density ramp. Significant tunable enhancement of harmonic emission is verified experimentally, with factors of > 50 in relative signal increase achieved in a narrow band of harmonics at the cutoff frequency

    First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils

    No full text
    Electrons have been accelerated from ultra-thin diamond-like carbon (DLC) foils by an ultrahigh-intensity laser pulse. A distinct quasi-monoenergetic electron spectrum peaked at 30 MeV is observed at a target thickness as thin as 5 nm which is in contrast to the observations of wide spectral distributions for thicker targets. At the same time, a substantial drop in laser-accelerated ion energies is found. The experimental findings give first indication that relativistic electron sheets can be generated from ultra-thin foils which in future may be used to generate brilliant X-ray beams by the coherent reflection of a second laser
    corecore