47 research outputs found

    Some possibilities for laboratory searches for variations of fundamental constants

    Get PDF

    Study of hyperfine structure in simple atoms and precision tests of the bound state QED

    Get PDF
    We consider the most accurate tests of bound state QED, precision theory of simple atoms, related to the hyperfine splitting in light hydrogen-like atoms. We discuss the HFS interval of the 1s state in muonium and positronium and of the 2s state in hydrogen, deuterium and helium-3 ion. We summarize their QED theory and pay attention to involved effects of strong interactions. We also consider recent optical measurements of the 2s HFS interval in hydrogen and deuterium.Comment: presented at The International Workshop "e+e- collisions from phi to psi

    Improved theoretical prediction for the 2s hyperfine interval in helium ion

    Full text link
    We consider the uncertainty of theoretical calculations for a specific difference of the hyperfine intervals in the 1s and 2s states in a light hydrogen-like atom. For a number of crucial radiative corrections the result for hydrogen atom and helium ion appears as an extrapolation of the numerical data from medium to low Z. An approach to a plausible estimation of the uncertainty is suggested using the example of the difference D21=8Ehfs(2s)Ehfs(1s)D_{21}= 8E_{hfs}(2s)-E_{hfs}(1s)

    Search for Possible Variation of the Fine Structure Constant

    Full text link
    Determination of the fine structure constant alpha and search for its possible variation are considered. We focus on a role of the fine structure constant in modern physics and discuss precision tests of quantum electrodynamics. Different methods of a search for possible variations of fundamental constants are compared and those related to optical measurements are considered in detail.Comment: An invited talk at HYPER symposium (Paris, 2002

    Logarithmic two-loop corrections to the Lamb shift in hydrogen

    Get PDF
    Higher order (α/π)2(Zα)6(\alpha/\pi)^2 (Z \alpha)^6 logarithmic corrections to the hydrogen Lamb shift are calculated. The results obtained show the two-loop contribution has a very peculiar behavior, and significantly alter the theoretical predictions for low lying S-states.Comment: 14 pages, including 2 figures, submitted to Phys. Rev. A, updated with minor change

    Hadronic effects in leptonic systems: muonium hyperfine structure and anomalous magnetic moment of muon

    Full text link
    Contributions of hadronic effects to the muonium physics and anomalous magnetic moment of muon are considered. Special attention is paid to higher-order effects and the uncertainty related to the hadronic contribution to the hyperfine structure interval in the ground state of muonium.Comment: Presented at PSAS 2002 (St. Petersburg

    Three-Loop Radiative-Recoil Corrections to Hyperfine Splitting in Muonium

    Full text link
    We calculate three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the diagrams with the first order electron and muon polarization loop insertions in graphs with two exchanged photons. These corrections are enhanced by the large logarithm of the electron-muon mass ratio. The leading logarithm squared contribution was obtained a long time ago. Here we calculate the single-logarithmic and nonlogarithmic contributions. We previously calculated the three-loop radiative-recoil corrections generated by two-loop polarization insertions in the exchanged photons. The current paper therefore concludes calculation of all three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by diagrams with closed fermion loop insertions in the exchanged photons. The new results obtained here improve the theory of hyperfine splitting, and affect the value of the electron-muon mass ratio extracted from experimental data on the muonium hyperfine splitting.Comment: 27 pages, 6 figures, 7 table

    Virtual annihilation contribution to orthopositronium decay rate

    Get PDF
    Order alpha^2 contribution to the orthopositronium decay rate due to one-photon virtual annihilation is found to be delta Gamma = (alpha/pi)^2 (pi^2 ln(alpha) - 0.8622(9))Gamma_LO.Comment: 2 pages, no figure

    Semi-Analytic Approach to Higher-Order Corrections in Simple Muonic Bound Systems: Vacuum Polarization, Self-Energy and Radiative-Recoil

    Full text link
    The current discrepancy of theory and experiment observed recently in muonic hydrogen necessitates a reinvestigation of all corrections to contribute to the Lamb shift in muonic hydrogen muH, muonic deuterium muD, the muonic 3He ion, as well as in the muonic 4He ion. Here, we choose a semi-analytic approach and evaluate a number of higher-order corrections to vacuum polarization (VP) semi-analytically, while remaining integrals over the spectral density of VP are performed numerically. We obtain semi-analytic results for the second-order correction, and for the relativistic correction to VP. The self-energy correction to VP is calculated, including the perturbations of the Bethe logarithms by vacuum polarization. Subleading logarithmic terms in the radiative-recoil correction to the 2S-2P Lamb shift of order alpha (Zalpha)^5 mu^3 ln(Zalpha)/(m_mu m_N) are also obtained. All calculations are nonperturbative in the mass ratio of orbiting particle and nucleus.Comment: 10 pages; svjour style; to appear in the European Physical Journal

    QED theory of the nuclear recoil effect on the atomic g factor

    Full text link
    The quantum electrodynamic theory of the nuclear recoil effect on the atomic g factor to all orders in \alpha Z and to first order in m/M is formulated. The complete \alpha Z-dependence formula for the recoil correction to the bound-electron g factor in a hydrogenlike atom is derived. This formula is used to calculate the recoil correction to the bound-electron g factor in the order (\alpha Z)^2 m/M for an arbitrary state of a hydrogenlike atom.Comment: 17 page
    corecore