28 research outputs found

    Effect of Nucleation Cavities on Enhanced Boiling Heat Transfer in Microchannels

    No full text
    Boiling instabilities, high temperatures of the onset of boiling (ONB), and early transition to dryout are some of the insufficiently resolved issues of flow boiling in microchannels. This article addresses the flow boiling challenges with the incorporation of flow restrictors to reduce the boiling instabilities and hinder vapor backflows. In addition, the temperature of the ONB was lowered and the heat transfer coefficient was increased during boiling with the fabrication of potential nucleation cavities in the microchannel walls and bottom. Experiments were conducted with degassed double-distilled water in arrays of microchannels with the hydraulic diameter ranging from 25 to 80 µm, whereas the nucleation cavities characteristic sizes varied from 2 to 12 µm. The temperatures of the ONB were up to 35 K lower in the microchannel array with properly sized nucleation cavities compared to arrays of microchannels, in which the etched nucleation cavities were less suitable. The combined effect of fabricated nucleation cavities and interconnected microchannels increased the heat transfer coefficient from three to 10 times depending on the size of the etched nucleation cavities and the transferred heat flux in the microchannel arrays

    Entropy generation analysis of a microchannel-condenser for use in a vapor compression refrigeration cycle [Analyse de la production d'entropie d'un condenseur à microcanaux pour une utilisation dans un cycle frigorifique à compression de vapeur]

    No full text
    Dimensionless entropy generation number in the microchannel condenser of a vapor compression refrigeration cycle is investigated. An air cooled, brazed aluminum parallel flow heat exchanger is considered as the condenser with R-134a as the refrigerant. While the effects of the fin pitch, fin height, louver angle and the air mass flow rate are investigated for the air side, the effect of the channel diameter is examined for the refrigerant side. The analysis is performed segment by segment for the superheated, two phase and subcooled regions using well-established empirical correlations. A mapping study is presented for the variation of entropy generation number with the mentioned parameters. The optimum air mass flow rate interval is found to be between 0.055 and 0.1?kgs-1 for a given fin pitch interval of 1–1.6?mm. This range is within the operating limits of air fans in the market for this size. In his operating range, the optimal dimensions giving the minimum entropy generation numbers are presented. The entropy generation number distribution is given based on the pressure drop, heat transfer or the refrigerant state in the heat exchanger considering superheated, two phase, and subcooled regions. The entropy generation number due to pressure drop on the air side becomes dominant after a mass flow rate around 0.08?kgs-1. Hence, an optimum air mass flow rate generating the minimum entropy generation number is sought for different sizes of the condenser. The condenser length is variable in the range of 84.3–80.6?mm for the mentioned optimal air mass flow rate interval. The condenser height changes depending on desired operational conditions, and it is determined to be 112.5?mm for the fixed values given in the study. The study is unique in the literature in pursuing an entropy generation number mapping study for microchannel two-phase flow in air cooled heat exchangers. © 2016 Elsevier Ltd and IIR112M168This study has been supported by “The Scientific and Technological Research Council of Turkey, TÜBİTAK ” under grant number 112M168 . The studies of the first author in the Thermal Analysis, Microfluidics, and Fuel Cell Laboratory at Rochester Institute of Technology, Rochester, NY, USA have also been supported by “The Scientific and Technological Research Council of Turkey, TÜBİTAK ” through the visiting scholar program 2214

    Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    No full text
    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle   10⁰) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design features and operating conditions: • GDL materials: use lower thermal conductivity cathode GDL and decrease the anode GDL thickness. • Bipolar plate design: use a channel geometry that can be produced using a high-speed manufacturing process, with a hydrophilic coating. • Shutdown and gas purge protocol: incorporate above findings in developing cost effective and energy efficient shutdown purge protocol. It should be noted that a comprehensive fuel cell operating strategy must consider the entire range of operating conditions under which the system needs to perform. Although the recommendations above will benefit fuel cell performance under conditions where liquid water is expected to be present, they must also be fully assessed to understand their impact under relatively dry conditions
    corecore