75 research outputs found

    Osteogenic tumour in Australopithecus sediba: Earliest hominin evidence for neoplastic disease

    Get PDF
    We describe the earliest evidence for neoplastic disease in the hominin lineage. This is reported from the type specimen of the extinct hominin Australopithecus sediba from Malapa, South Africa, dated to 1.98 million years ago. The affected individual was male and developmentally equivalent to a human child of 12 to 13 years of age. A penetrating lytic lesion affected the sixth thoracic vertebra. The lesion was macroscopically evaluated and internally imaged through phase-contrast X-ray synchrotron microtomography. A comprehensive differential diagnosis was undertaken based on gross- and micro-morphology of the lesion, leading to a probable diagnosis of osteoid osteoma. These neoplasms are solitary, benign, osteoid and bone-forming tumours, formed from well-vascularised connective tissue within which there is active production of osteoid and woven bone. Tumours of any kind are rare in archaeological populations, and are all but unknown in the hominin record, highlighting the importance of this discovery. The presence of this disease at Malapa predates the earliest evidence of malignant neoplasia in the hominin fossil record by perhaps 200 000 years.NCS201

    New fossil remains of Homo naledi from the Lesedi Chamber, South Africa

    Get PDF
    The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.SP201

    Borrelioses, agentes e vetores

    Full text link

    CMHC Master\u27s Employment Requisites Fifteen Years Later

    No full text

    The basic reproduction number for complex disease systems: defining Ro for tick-borne infections

    No full text
    Characterizing the basic reproduction number, R(0), for many wildlife disease systems can seem a complex problem because several species are involved, because there are different epidemiological reactions to the infectious agent at different life-history stages, or because there are multiple transmission routes. Tick-borne diseases are an important example where all these complexities are brought together as a result of the peculiarities of the tick life cycle and the multiple transmission routes that occur. We show here that one can overcome these complexities by separating the host population into epidemiologically different types of individuals and constructing a matrix of reproduction numbers, the so-called next-generation matrix. Each matrix element is an expected number of infectious individuals of one type produced by a single infectious individual of a second type. The largest eigenvalue of the matrix characterizes the initial exponential growth or decline in numbers of infected individuals. Values below 1 therefore imply that the infection cannot establish. The biological interpretation closely matches that of R(0) for disease systems with only one type of individual and where infection is directly transmitted. The parameters defining each matrix element have a clear biological meaning. We illustrate the usefulness and power of the approach with a detailed examination of tick-borne diseases, and we use field and experimental data to parameterize the next-generation matrix for Lyme disease and tick-borne encephalitis. Sensitivity and elasticity analyses of the matrices, at the element and individual parameter levels, allow direct comparison of the two etiological agents. This provides further support that transmission between cofeeding ticks is critically important for the establishment of tick-borne encephalitis
    corecore