75 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation

    No full text
    Acute respiratory distress syndrome (ARDS) is defined as a syndrome of acute onset, with bilateral opacities on chest imaging and respiratory failure not caused by cardiac failure, leading to mild, moderate, or severe oxygenation impairment. The syndrome is most commonly a manifestation of sepsis-induced organ dysfunction, characterized by disruption of endothelial barrier integrity and diffuse lung damage. Imbalance between coagulation and inflammation is a predominant characteristic of ARDS, leading to extreme inflammatory response and diffuse fibrin deposition in vascular capillary bed and alveoli. Activated platelets, neutrophils, endothelial cells, neutrophil extracellular traps, microparticles, and coagulation proteases, participate in the complex process of immunothrombosis, which is a key event in ARDS pathophysiology. The present review is focused on the elucidation of immunothrombosis in ARDS and the potential therapeutic implications. 2016 © 2016 S. Karger AG, Basel

    Endothelial damage in acute respiratory distress syndrome

    No full text
    The pulmonary endothelium is a metabolically active continuous monolayer of squamous endothelial cells that internally lines blood vessels and mediates key processes involved in lung homoeostasis. Many of these processes are disrupted in acute respiratory distress syndrome (ARDS), which is marked among others by diffuse endothelial injury, intense activation of the coagulation system and increased capillary permeability. Most commonly occurring in the setting of sepsis, ARDS is a devastating illness, associated with increased morbidity and mortality and no effective pharmacological treatment. Endothelial cell damage has an important role in the pathogenesis of ARDS and several biomarkers of endothelial damage have been tested in determining prognosis. By further understanding the endothelial pathobiology, development of endothelial-specific therapeutics might arise. In this review, we will discuss the underlying pathology of endothelial dysfunction leading to ARDS and emerging therapies. Furthermore, we will present a brief overview demonstrating that endotheliopathy is an important feature of hospitalised patients with coronavirus disease-19 (COVID-19). © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Pulmonary hypertension in parenchymal lung disease

    No full text
    Idiopathic pulmonary arterial hypertension (IPAH) has been extensively investigated, although it represents a less common form of the pulmonary hypertension (PH) family, as shown by international registries. Interestingly, in types of PH that are encountered in parenchymal lung diseases such as interstitial lung diseases (ILDs), chronic obstructive pulmonary disease (COPD), and many other diffuse parenchymal lung diseases, some of which are very common, the available data is limited. In this paper, we try to browse in the latest available data regarding the occurrence, pathogenesis, and treatment of PH in chronic parenchymal lung diseases. Copyright © 2012 Iraklis Tsangaris et al

    Pulmonary capillary recruitment and distention in mammalian lungs: species similarities

    No full text
    Pulmonary arterial pressure rises minimally during exercise. The pulmonary microcirculation accommodates increasing blood flow via recruitment of pulmonary capillaries and, at higher flows, by distention of already perfused capillaries. The flow transition range between recruitment and distention has not been studied or compared across mammalian species, including humans. We hypothesised that the range would be similar. Functional pulmonary capillary surface area (FCSA) can be estimated using validated metabolic techniques. We reviewed data from previous studies in three mammalian species (perfused rabbit lungs and dog lung lobes, and exercising humans) and generated blood flow–FCSA curves over a range of flows. We noted where the curves diverged from the theoretical line of pure recruitment (Recruitment) and determined the flow where the curve slope equalled 50% that of Recruitment, or equalled that of a theoretical curve representing full capillary distention (Distention). The three mammalian species have similar flow ranges for the transition from predominantly recruitment to predominantly distention, with dogs having the highest transition point. Within the physiological range of most daily activity, the species are similar and accommodate increasing blood flow mainly via recruitment, with progressive distention at higher flows. This is highly relevant to pulmonary physiology during exercise. © 2022, European Respiratory Society. All rights reserved
    corecore