11 research outputs found

    Status of NSLS-II booster

    No full text
    The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy booster-synchrotron. Budker Institute of Nuclear Physics builds booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from minimal 170 MeV injection energy to maximal energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. This paper summarizes the status of NSLS-II booster.Национальный источник синхротронного излучения II является синхротроном третьего поколения, созданным в Брукхевенской национальной лаборатории. Проект включает: высокооптимизированное накопительное кольцо на 3 ГэВ, линейный ускоритель и бустерный синхротрон на полную энергию. Институт ядерной физики им. Г.И. Будкера создает бустер для NSLS-II. Бустер должен надежно и непрерывно ускорять пучок электронов от минимальной энергии инжекции 170 МэВ до максимальной энергии 3,15 ГэВ с током пучка 20 мА. Бустер должен быть способен работать в односгустковом и многосгустковом режимах. Эта статья суммирует состояние дел по бустеру для NSLS-II.Національне джерело синхротронного випромінювання II є синхротроном третього покоління, створеним у Брукхевенській національній лабораторії. Проект включає: високооптимізоване накопичувальне кільце на 3 ГеВ, лінійний прискорювач і бустерний синхротрон на повну енергію. Інститут ядерної фізики ім. Г.І. Будкера створює бустер для NSLS-II. Бустер повинен надійно і безперервно прискорювати пучок електронів від мінімальної енергії інжекції 170 МеВ до максимальної енергії 3,15 ГеВ зі струмом пучка 20 мА. Бустер повинен бути здатний працювати в односгустковому і багатосгустковому режимах. Ця стаття підсумовує стан справ по бустеру для NSLS-II

    The STAR experiment at the relativistic heavy ion collider

    Full text link

    A novel comprehensive approach for human vascular allografts cryopreservation and radiation sterilization for the tissue engineering industry

    No full text
    Aim: to verify new techniques for human cadaveric vascular allografts cryopreservation, thawing and sterilization for the tissue engineering purposes. We use polydimethylsiloxane (PDMS) as a well-known, promising coolant. This allowed us to completely omit any cryoprotective or vitrifying solutions. Using of PDMS also makes possible an applying these allografts directly after freezing and decellularization and also it will also provide an opportunity to develop secure protocols of tissue— engineered vascular conduits cryopreservation. Matherial and methods. After mathematical modeling of cooling process and its validation the experiment for sealed (isolated) freezing at low temperature conditions of 30 femoral arterial segments has been conducted. The segments were at least 10 cm in length and taken from 15 cadaveric donors in the age of 65-85 years. The freezing process was carried out using the abovementioned coolant— PDMS, and then physico-mechanical properties of these allografts were evaluated with the special Instron machine. According to the results obtained, a modeling of their sterilization conditions was conducted (the grafts were freezed). Results. By physico-mechanical properties validation and restricted histological analysis it was shown that there was an accordance between freezed/thawed allografts properties and native vessels. Conclusion. The abovementioned approach for allografts cryopreservation and thawing was efficient enough for further work in this direction

    Barents Sea polar bears ( Ursus maritimus

    No full text
    This paper examines how anthropogenic threats, such as disturbance, pollution and climate change, are linked to polar bear (Ursus maritimus) population biology in the Svalbard and Barents Sea area, with the aim to increase our understanding of how human activity may impact the population. Overharvesting drastically reduced the population of polar bears in the Barents Sea region from about 1870 to 1970. After harvesting was stopped—in 1956 in Russia and 1973 in Norway—the population grew to an estimated 2650 individuals (95% confidence interval 1900–3600) in 2004, and maternity denning in the Svalbard Archipelago became more widely distributed. During recent decades, the population has faced challenges from a variety of new anthropogenic impacts: a range of pollutants, an increasing level of human presence and activity as well as changes in ice conditions. Contaminants bioaccumulate up through the marine food web, culminating in this top predator that consumes ringed, bearded and harp seals. Females with small cubs use land-fast sea ice for hunting and are therefore vulnerable to disturbance by snowmobile drivers. Sea-ice diminution, associated with climate change, reduces polar bears’ access to denning areas and could negatively affect the survival of cubs. There are clear linkages between population biology and current anthropogenic threats, and we suggest that future research and management should focus on and take into consideration the combined effects of several stressors on polar bears

    Kinetics of electron states of hydrogen molecules in nonequilibrium discharges: Singlet states

    No full text
    corecore