13 research outputs found

    RuvAB Acts at Arrested Replication Forks

    Get PDF
    AbstractReplication arrest leads to the occurrence of DNA double-stranded breaks (DSB). We studied the mechanism of DSB formation by direct measure of the amount of in vivo linear DNA in Escherichia coli cells that lack the RecBCD recombination complex and by genetic means. The RuvABC proteins, which catalyze migration and cleavage of Holliday junctions, are responsible for the occurrence of DSBs at arrested replication forks. In cells proficient for RecBC, RuvAB is uncoupled from RuvC and DSBs may be prevented. This may be explained if a Holliday junction forms upon replication fork arrest, by annealing of the two nascent strands. RecBCD may act on the double-stranded tail prior to the cleavage of the RuvAB-bound junction by RuvC to rescue the blocked replication fork without breakage

    Replication slippage involves DNA polymerase pausing and dissociation

    No full text
    Genome rearrangements can take place by a process known as replication slippage or copy-choice recombination. The slippage occurs between repeated sequences in both prokaryotes and eukaryotes, and is invoked to explain microsatellite instability, which is related to several human diseases. We analysed the molecular mechanism of slippage between short direct repeats, using in vitro replication of a single-stranded DNA template that mimics the lagging strand synthesis. We show that slippage involves DNA polymerase pausing, which must take place within the direct repeat, and that the pausing polymerase dissociates from the DNA. We also present evidence that, upon polymerase dissociation, only the terminal portion of the newly synthesized strand separates from the template and anneals to another direct repeat. Resumption of DNA replication then completes the slippage process

    Replication fork collapse at replication terminator sequences

    No full text
    Replication fork arrest is a source of genome re arrangements, and the recombinogenic properties of blocked forks are likely to depend on the cause of blockage. Here we study the fate of replication forks blocked at natural replication arrest sites. For this purpose, Escherichia coli replication terminator sequences Ter were placed at ectopic positions on the bacterial chromosome. The resulting strain requires recombinational repair for viability, but replication forks blocked at Ter are not broken. Linear DNA molecules are formed upon arrival of a second round of replication forks that copy the DNA strands of the first blocked forks to the end. A model that accounts for the requirement for homologous recombination for viability in spite of the lack of chromosome breakage is proposed. This work shows that natural and accidental replication arrests sites are processed differently

    Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks

    No full text
    The holD gene codes for the ψ subunit of the Escherichia coli DNA polymerase III holoenzyme, a component of the γ complex clamp loader. A holD mutant was isolated for the first time in a screen for mutations that increase the frequency of tandem repeat deletions. In contrast to tandem repeat deletions in wild-type strains, deletion events stimulated by the holD mutation require RecA. They do not require RecF, and hence do not result from the recombinational repair of gaps, arguing against uncoupling of the leading and lagging strand polymerases in the holD mutant. The holD recBC combination of mutations is lethal and holD recBts recCts strains suffer DNA double-strand breaks (DSBs) at restrictive temperature. DSBs require the presence of the Holliday junction-specific enzymes RuvABC and are prevented in the presence of RecBCD. We propose that impairment of replication due to the holD mutation causes the arrest of the entire replisome; consequently, Holliday junctions are formed by replication fork reversal, and unequal crossing over during RecA- and RecBCD-mediated re-incorporation of reversed forks causes the hyper-recombination phenotype

    A Two-Protein Strategy for the Functional Loading of a Cellular Replicative DNA Helicase

    No full text
    International audienceThe delivery of a ring-shaped hexameric helicase onto DNA is a fundamental step of DNA replication, conserved in all cellular organisms. We report the biochemical characterization of the bacterial hexameric replicative helicase DnaC of Bacillus subtilis with that of the two replication initiation proteins DnaI and DnaB. We show that DnaI and DnaB interact physically and functionally with the DnaC helicase and mediate its functional delivery onto DNA. Thus, DnaB and DnaI form a pair of helicase loaders, revealing a two-protein strategy for the loading of a replicative helicase. We also present evidence that the DnaC helicase loading mechanism appears to be of the ring-assembly type, proceeding through the recruitment of DnaC monomers and their hexamerization around single-stranded DNA by the coordinated action of DnaI and DnaB
    corecore