7 research outputs found

    Experimental progress in positronium laser physics

    Get PDF

    A new perspective: imaging the stereochemistry of molecular collisions

    No full text
    The concept of the steric effect in molecular collisions is central to chemistry. In this Perspective article we review some of the progress made in studying the steric effect in inelastic and reactive collisions involving relatively small isolated atomic and molecular species. We overview the theoretical framework used to quantify the steric effect, and outline some of the key experimental approaches that can be employed to study the dynamics and mechanism of collisions involving oriented and aligned molecules. We illustrate the discussion by highlighting a few recent studies of inelastic and reactive scattering. Finally, we conclude with some reflections on possible future directions of interest

    Integral steric asymmetry in the inelastic scattering of NO(X2Π)

    No full text
    The integral steric asymmetry for the inelastic scattering of NO(X) by a variety of collision partners was recorded using a crossed molecular beam apparatus. The initial state of the NO(X, v = 0, j = 1/2, Ω=1/2, I=-1,f) molecule was selected using a hexapole electric field, before the NO bond axis was oriented in a static electric field, allowing probing of the scattering of the collision partner at either the N- or O-end of the molecule. Scattered NO molecules were state selectively probed using (1 + 1′) resonantly enhanced multiphoton ionisation, coupled with velocity-map ion imaging. Experimental integral steric asymmetries are presented for NO(X) + Ar, for both spin-orbit manifolds, and Kr, for the spin-orbit conserving manifold. The integral steric asymmetry for spin-orbit conserving and changing transitions of the NO(X) + O2 system is also presented. Close-coupled quantum mechanical scattering calculations employing well-tested ab initio potential energy surfaces were able to reproduce the steric asymmetry observed for the NO-rare gas systems. Quantum mechanical scattering and quasi-classical trajectory calculations were further used to help interpret the integral steric asymmetry for NO + O2. Whilst the main features of the integral steric asymmetry of NO with the rare gases are also observed for the O2 collision partner, some subtle differences provide insight into the form of the underlying potentials for the more complex system

    Genome-wide analyses of individual differences in quantitatively assessed reading- and language-related skills in up to 34,000 people.

    No full text
    The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits

    Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention

    No full text
    Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type II(A) muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention

    A saturated map of common genetic variants associated with human height

    No full text
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries
    corecore