15 research outputs found

    Control of Ultracold Collisions with Frequency-Chirped Light

    Get PDF
    We report on ultracold atomic collision experiments utilizing frequency-chirped laser light. A rapid chirp below the atomic resonance results in adiabatic excitation to an attractive molecular potential over a wide range of internuclear separation. This leads to a transient inelastic collision rate which is large compared to that obtained with fixed-frequency excitation. The combination of high efficiency and temporal control demonstrates the benefit of applying the techniques of coherent control to the ultracold domain

    Dynamics of trapped two-component Fermi gas: temperature dependence of the transition from collisionless to collisional regime

    Get PDF
    We develop a numerical method to study the dynamics of a two-component atomic Fermi gas trapped inside a harmonic potential at temperature T well below the Fermi temperature Tf. We examine the transition from the collisionless to the collisional regime down to T=0.2 Tf and find good qualitative agreement with the experiments of B. DeMarco and D.S. Jin [Phys. Rev. Lett. vol. 88, 040405 (2002)]. We demonstrate a twofold role of temperature on the collision rate and on the efficiency of collisions. In particular we observe an hitherto unreported effect, namely that the transition to hydrodynamic behavior is shifted towards lower collision rates as temperature decreases.Comment: 4 pages, 3 figure

    Temperature dependence of density profiles for a cloud of non-interacting fermions moving inside a harmonic trap in one dimension

    Full text link
    We extend to finite temperature a Green's function method that was previously proposed to evaluate ground-state properties of mesoscopic clouds of non-interacting fermions moving under harmonic confinement in one dimension. By calculations of the particle and kinetic energy density profiles we illustrate the role of thermal excitations in smoothing out the quantum shell structure of the cloud and in spreading the particle spill-out from quantum tunnel at the edges. We also discuss the approach of the exact density profiles to the predictions of a semiclassical model often used in the theory of confined atomic gases at finite temperature.Comment: 7 pages, 4 figure

    Collisionless and hydrodynamic excitations of trapped boson-fermion mixtures

    Full text link
    Within a scaling ansatz formalism plus Thomas-Fermi approximation, we investigate the collective excitations of a harmonically trapped boson-fermion mixture in the collisionless and hydrodynamic limit at low temperature. Both the monopole and quadrupole modes are considered in the presence of spherical as well as cylindrically symmetric traps. In the spherical traps, the frequency of monopole mode coincides in the collisionless and hydrodynamic regime, suggesting that it might be undamped in all collisional regimes. In contrast, for the quadrupole mode, the frequency differs largely in these two limits. In particular, we find that in the hydrodynamic regime the quadrupole oscillations with equal bosonic and fermionic amplitudes generate an exact eigenstate of the system, regardless of the boson-fermion interaction. This resembles the Kohn mode for the dipole excitation. We discuss in some detail the behavior of monopole and quadrupole modes as a function of boson-fermion coupling at different boson-boson interaction strength. Analytic solutions valid at weak and medium fermion-boson coupling are also derived and discussed.Comment: 29 pages + 7 figures, resubmitted to Physical Review

    Control of Ultracold Collisions with Frequency-Chirped Light

    No full text
    We report on ultracold atomic collision experiments utilizing frequency-chirped laser light. A rapid chirp below the atomic resonance results in adiabatic excitation to an attractive molecular potential over a wide range of internuclear separation. This leads to a transient inelastic collision rate which is large compared to that obtained with fixed-frequency excitation. The combination of high efficiency and temporal control demonstrates the benefit of applying the techniques of coherent control to the ultracold domain

    Control of Ultracold Collisions with Frequency-Chirped Light

    No full text
    We report on ultracold atomic collision experiments utilizing frequency-chirped laser light. A rapid chirp below the atomic resonance results in adiabatic excitation to an attractive molecular potential over a wide range of internuclear separation. This leads to a transient inelastic collision rate which is large compared to that obtained with fixed-frequency excitation. The combination of high efficiency and temporal control demonstrates the benefit of applying the techniques of coherent control to the ultracold domain

    Control of Ultracold Collisions with Frequency-Chirped Light

    Get PDF
    We report on ultracold atomic collision experiments utilizing frequency-chirped laser light. A rapid chirp below the atomic resonance results in adiabatic excitation to an attractive molecular potential over a wide range of internuclear separation. This leads to a transient inelastic collision rate which is large compared to that obtained with fixed-frequency excitation. The combination of high efficiency and temporal control demonstrates the benefit of applying the techniques of coherent control to the ultracold domain
    corecore