12 research outputs found
The synthesis of some indole-containing amino acids as linkers for the construction of DNA minor groove binders
Molecular modelling studies showed that indole dicarboxylic acids are potential linkers for the synthesis of bis-netropsin analogues with a good fit to the minor groove of DNA. To test this hypothesis, 2-carboxyindole-6-acetic acid, indole-2,6-dicarboxylic acid, 6-(2-carboxyethyl)indole-2-carboxylic acid, 6-(2-carboxy-1-ethenyl)indole-2-carboxylic acid were prepared and coupled to 3-[1-methyl-4-(1-methyl-4-aminopyrrole-2-carboxamido)pyrrole-2-carboxamido]dimethylaminopropane. Similarly indole-2,5-dicarboxylic acid was prepared and coupled to 3-[1-methyl-4-(1-methyl-4-aminopyrrple-2-carboxamido)pyrrole-2-carboxamido]propionamidine hydrochloride. The derivatives of 26-28 showed especially strong binding to AT rich regions as shown by footprinting studies
The Synthesis of Some Head to Head Linked DNA Minor Groove Binders
A series of head to head linked dimers of heterocyclic amino acids has been prepared for investigation of affinity and selectivity in binding to the minor groove of DNA. The selection of targets for synthesis was led by computer based design. Several novel dicarboxylic acid linkers including indoles, phenanthrenes, a fluorenone, and a bisbenzothiophene have been included. Analysis of binding to DNA by footprinting showed high affinity for compounds derived from 2,7-dihydrophenanthrene dicarboxylic acid and a predominant selectivity for AT rich regions containing at least 4 AT pairs but with the ability to span up to two CG base pairs
Recommended from our members
Associations Between Epigenetic Age Acceleration and microRNA Expression Among U.S. Firefighters
Epigenetic changes may be biomarkers of health. Epigenetic age acceleration (EAA), the discrepancy between epigenetic age measured via epigenetic clocks and chronological age, is associated with morbidity and mortality. However, the intersection of epigenetic clocks with microRNAs (miRNAs) and corresponding miRNA-based health implications have not been evaluated. We analyzed DNA methylation and miRNA profiles from blood sampled among 332 individuals enrolled across 2 U.S.-based firefighter occupational studies (2015-2018 and 2018-2020). We considered 7 measures of EAA in leukocytes (PhenoAge, GrimAge, Horvath, skin-blood, and Hannum epigenetic clocks, and extrinsic and intrinsic epigenetic age acceleration). We identified miRNAs associated with EAA using individual linear regression models, adjusted for sex, race/ethnicity, chronological age, and cell type estimates, and investigated downstream effects of associated miRNAs with miRNA enrichment analyses and genomic annotations. On average, participants were 38 years old, 88% male, and 75% non-Hispanic white. We identified 183 of 798 miRNAs associated with EAA (FDR q < 0.05); 126 with PhenoAge, 59 with GrimAge, 1 with Horvath, and 1 with the skin-blood clock. Among miRNAs associated with Horvath and GrimAge, there were 61 significantly enriched disease annotations including age-related metabolic and cardiovascular conditions and several cancers. Enriched pathways included those related to proteins and protein modification. We identified miRNAs associated with EAA of multiple epigenetic clocks. PhenoAge had more associations with individual miRNAs, but GrimAge and Horvath had greater implications for miRNA-associated pathways. Understanding the relationship between these epigenetic markers could contribute to our understanding of the molecular underpinnings of aging and aging-related diseases. © The Author(s) 2023.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]