19 research outputs found

    "There is nothing so practical as a good theory": a pragmatic guide for selecting theoretical approaches for implementation projects

    Get PDF
    Background: A multitude of theories, models and frameworks relating to implementing evidence-based practice in health care exist, which can be overwhelming for clinicians and clinical researchers new to the field of implementation science. Clinicians often bear responsibility for implementation, but may be unfamiliar with theoretical approaches designed to inform or understand implementation. Main Text: In this article, a multidisciplinary group of clinicians and health service researchers present a pragmatic guide to help clinicians and clinical researchers understand what implementation theories, models and frameworks are; how a theoretical approach to implementation might be used; and some prompts to consider when selecting a theoretical approach for an implementation project. Ten commonly used and highly cited theoretical approaches are presented, none of which have been utilised to their full potential in the literature to date. Specifically, theoretical approaches tend to be applied retrospectively to evaluate or interpret findings from a completed implementation project, rather than being used to plan and design theory-informed implementation strategies which would intuitively have a greater likelihood of success. We emphasise that there is no right or wrong way of selecting a theoretical approach, but encourage clinicians to carefully consider the project's purpose, scope and available data and resources to allow them to select an approach that is most likely to "value-add" to the implementation project. Conclusion: By assisting clinicians and clinical researchers to become confident in selecting and applying theoretical approaches to implementation, we anticipate an increase in theory-informed implementation projects. This then will contribute to more nuanced advice on how to address evidence-practice gaps and ultimately to contribute to better health outcomes.Elizabeth A. Lynch, Alison Mudge, Sarah Knowles, Alison L. Kitson, Sarah C. Hunter and Gill Harve

    Single photon emitters based on Ni/Si related defects in single crystalline diamond

    Full text link
    We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 10^12/cm^2 and 10^10/cm^2 resp.) due to creation of excess fluorescent background. We demonstrate creation of Ni/Si related centers showing emission in the spectral range between 767nm and 775nm and narrow line-widths of 2nm FWHM at room temperature. Measurements of the intensity auto-correlation functions prove single-photon emission. The investigated color centers can be coarsely divided into two groups: Drawing from photon statistics and the degree of polarization in excitation and emission we find that some color centers behave as two-level, single-dipole systems whereas other centers exhibit three levels and contributions from two orthogonal dipoles. In addition, some color centers feature stable and bright emission with saturation count rates up to 78kcounts/s whereas others show fluctuating count rates and three-level blinking.Comment: 7 pages, submitted to Applied Physics B, revised versio

    Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion

    Full text link
    We describe the results of a parametric down-conversion experiment in which the detection of one photon of a pair causes the other photon to be switched into a storage loop. The stored photon can then be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. Although the stored single photon is only available at periodic time intervals, those times can be chosen to match the cycle time of a quantum computer by using pulsed down-conversion. The potential use of the storage loop as a photonic quantum memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe

    Light scattering from disordered overlayers of metallic nanoparticles

    Full text link
    We develop a theory for light scattering from a disordered layer of metal nanoparticles resting on a sample. Averaging over different disorder realizations is done by a coherent potential approximation. The calculational scheme takes into account effects of retardation, multipole excitations, and interactions with the sample. We apply the theory to a system similar to the one studied experimentally by Stuart and Hall [Phys. Rev. Lett. {\bf 80}, 5663 (1998)] who used a layered Si/SiO2_2/Si sample. The calculated results agree rather well with the experimental ones. In particular we find conspicuous maxima in the scattering intensity at long wavelengths (much longer than those corresponding to plasmon resonances in the particles). We show that these maxima have their origin in interference phenomena in the layered sample.Comment: 19 pages, 12 figure

    Sub-microsecond correlations in photoluminescence from InAs quantum dots

    Full text link
    Photon correlation measurements reveal memory effects in the optical emission of single InAs quantum dots with timescales from 10 to 800 ns. With above-band optical excitation, a long-timescale negative correlation (antibunching) is observed, while with quasi-resonant excitation, a positive correlation (blinking) is observed. A simple model based on long-lived charged states is presented that approximately explains the observed behavior, providing insight into the excitation process. Such memory effects can limit the internal efficiency of light emitters based on single quantum dots, and could also be problematic for proposed quantum-computation schemes.Comment: 8 pages, 8 figure

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Molecular fluorescence near metallic gratings

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX185844 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Exploring the role of a facilitator in supporting family carers when embedding the iSupport for Dementia programme in care services: A qualitative study

    Get PDF
    OnlinePublAims: To explore stakeholders' perceptions of a facilitator's role in supporting carers when embedding iSupport for Dementia psychoeducation program, in care services. Methods: A qualitative descriptive study design was applied. Data were collected from workshops and interviews with carers of people living with dementia (PLWD) and with health and social care professionals from two tertiary hospitals and two community aged care organisations across three Australian states between October 2021 and March 2022. A thematic analysis was used to analyse data. The COREQ guideline was followed to report our findings. Results: A total of 30 family carers and 45 health and social care professionals participated in the study. Three main themes and seven subthemes were identified from the data. We described the main themes as (1) the facilitator's role at the time of dementia diagnosis, (2) the facilitator's role throughout the everyday dementia care journey and (3) the facilitator's role during transition moments. Conclusions: Caring for family members with dementia is demanding and stressful for carers. Embedding a facilitator-enabled iSupport for Dementia program in hospital and community aged care settings has the potential to mitigate sources of stress associated with care recipient factors, carer factors and care service factors, and improve the health and well-being of carers and those for whom they care. Relevance to Clinical Practice: Our findings will inform the establishment of iSupport facilitators appointed by dementia care providers in hospital and community care settings and help determine their roles and responsibilities in delivering the iSupport program. Our findings relate to nurse-led and coordinated dementia care in hospital and community aged care settings. Patient or Public Contribution: This study was co-designed with stakeholders from two aged care organisations and two tertiary hospitals. The study participants were staff employed by these organisations and carers of PLWD who were service users.Ying Yu, Sarah C. Hunter, Lily Xiao, Claudia Meyer, Michael Chapman, Kai Ping Tan, Langduo Chen, Sue Mckechnie, Julie Ratcliffe, Shahid Ullah, Alison Kitson, Andre Q. Andrade, Craig Whitehea
    corecore