117 research outputs found

    Deformation of the Planetary Orbits Caused by the Time Dependent Gravitational Potential in the Universe

    Full text link
    In the paper are studied the deformations of the planetary orbits caused by the time dependent gravitational potential in the universe. It is shown that the orbits are not axially symmetric and the time dependent potential does not cause perihelion precession. It is found a simple formula for the change of the orbit period caused by the time dependent gravitational potential and it is tested for two binary pulsars.Comment: 7 page

    Iterative graph cuts for image segmentation with a nonlinear statistical shape prior

    Full text link
    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts.Comment: Revision submitted to JMIV (02/24/13

    Age Constraints on Brane Models of Dark Energy

    Get PDF
    Inspired by recent developments in particle physics, the so-called brane world cosmology seems to provide an alternative explanation for the present dark energy problem. In this paper, we use the estimated age of high-zz objects to constrain the value of the cosmological parameters in some particular scenarios based on this large scale modification of gravity. We show that such models are compatible with these observations for values of the crossover distance between the 4 and 5 dimensions of the order of rc1.67Ho1r_c \leq 1.67H_o^{-1}.Comment: 4 pages, 2 figures, 1 table, to appear in Phys. Rev.

    Ultra Long Period Cepheids: a primary standard candle out to the Hubble flow

    Full text link
    The cosmological distance ladder crucially depends on classical Cepheids (with P=3-80 days), which are primary distance indicators up to 33 Mpc. Within this volume, very few SNe Ia have been calibrated through classical Cepheids, with uncertainty related to the non-linearity and the metallicity dependence of their period-luminosity (PL) relation. Although a general consensus on these effects is still not achieved, classical Cepheids remain the most used primary distance indicators. A possible extension of these standard candles to further distances would be important. In this context, a very promising new tool is represented by the ultra-long period (ULP) Cepheids (P \geq 80 days), recently identified in star-forming galaxies. Only a small number of ULP Cepheids have been discovered so far. Here we present and analyse the properties of an updated sample of 37 ULP Cepheids observed in galaxies within a very large metallicity range of 12+log(O/H) from ~7.2 to 9.2 dex. We find that their location in the colour(V-I)-magnitude diagram as well as their Wesenheit (V-I) index-period (WP) relation suggests that they are the counterparts at high luminosity of the shorter-period (P \leq 80 days) classical Cepheids. However, a complete pulsation and evolutionary theoretical scenario is needed to properly interpret the true nature of these objects. We do not confirm the flattening in the studied WP relation suggested by Bird et al. (2009). Using the whole sample, we find that ULP Cepheids lie around a relation similar to that of the LMC, although with a large spread (~0.4 mag).Comment: 8 pages, 4 figures, accepted for publication in Astrophysics & Space Scienc

    A high-resolution 6.0-megabase transcript map of the type 2 diabetes susceptibility region on human chromosome 20

    Get PDF
    Recent linkage studies and association analyses indicate the presence of at least one type 2 diabetes susceptibility gene in human chromosome region 20q12-q13.1. We have constructed a high-resolution 6.0-megabase (Mb) transcript map of this interval using two parallel, complementary strategies to construct the map. We assembled a series of bacterial artificial chromosome (BAC) contigs from 56 overlapping BAC clones, using STS/marker screening of 42 genes, 43 ESTs, 38 STSs, 22 polymorphic, and 3 BAC end sequence markers. We performed map assembly with GraphMap, a software program that uses a greedy path searching algorithm, supplemented with local heuristics. We anchored the resulting BAC contigs and oriented them within a yeast artificial chromosome (YAC) scaffold by observing the retention patterns of shared markers in a panel of 21 YAC clones. Concurrently, we assembled a sequence-based map from genomic sequence data released by the Human Genome Project, using a seed-and-walk approach. The map currently provides near-continuous coverage between SGC32867 and WI-17676 (∼ 6.0 Mb). EST database searches and genomic sequence alignments of ESTs, mRNAs, and UniGene clusters enabled the annotation of the sequence interval with experimentally confirmed and putative transcripts. We have begun to systematically evaluate candidate genes and novel ESTs within the transcript map framework. So far, however, we have found no statistically significant evidence of functional allelic variants associated with type 2 diabetes. The combination of the BAC transcript map, YAC-to-BAC scaffold, and reference Human Genome Project sequence provides a powerful integrated resource for future genomic analysis of this region

    Optical Spectra of SNR Candidates in NGC 300

    Full text link
    We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from optical spectra, we find that of 28 objects previously proposed as SNRs from optical observations, 22 meet this criterion with six showing [SII]/Ha of less than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated with the 28 previously proposed SNRs. Of these four, three (included in the 22 above) meet the criterion. In all, 22 of the 51 nebular objects meet the [SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc

    Mathematical modelling of primary production in Green Bay (Lake Michigan, USA), a phosphorus-and light-limited system

    Full text link
    Application of mathematical models in the design and evaluation of lake restoration programmes must include due consideration of three basic concepts of model development; 1) that the model framework is appropriately matched to the intended management use, 2) that selection of the proper degree of model complexity is fundamental to the achievement of model credibility and 3) that field and laboratory studies must be designed and interpreted with the aid of the model to insure development of a comprehensive, integrated tool.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41726/1/10452_2005_Article_BF02291163.pd

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
    corecore