32 research outputs found
Analysis of three-nucleon forces effects in the system
Using modern nucleon-nucleon interactions in the description of the
nuclear systems the per datum results to be much bigger than one. In
particular it is not possible to reproduce the three- and four-nucleon binding
energies and the scattering length simultaneously. This is one
manifestation of the necessity of including a three-nucleon force in the
nuclear Hamiltonian. In this paper we perform an analysis of some, widely used,
three-nucleon force models. We analyze their capability to describe the
aforementioned quantities and, to improve their description, we propose
modifications in the parametrization of the models. The effects of these new
parametrization are studied in some polarization observables at low energies.Comment: 10 pages, to be published in Few-Body Systems. Presented at the
workshop on "Relativistic Description of Two- and Three-body Systems in
Nuclear Physics" ECT* Trento, 19 - 23 October 200
Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction
Charge-symmetry breaking in the nucleon-nucleon force is investigated within
an effective field theory, using a classification of isospin-violating
interactions based on power-counting arguments. The relevant
charge-symmetry-breaking interactions corresponding to the first two orders in
the power counting are discussed, including their effects on the 3He-3H
binding-energy difference. The static charge-symmetry-breaking potential linear
in the nucleon-mass difference is constructed using chiral perturbation theory.
Explicit formulae in momentum and configuration spaces are presented. The
present work completes previously obtained results.Comment: 15 pages, 2 figure
Selected Topics in Three- and Four-Nucleon Systems
Two different aspects of the description of three- and four-nucleon systems
are addressed. The use of bound state like wave functions to describe
scattering states in collisions at low energies and the effects of some
of the widely used three-nucleon force models in selected polarization
observables in the three- and four-nucleon systems are discussed.Comment: Presented at the 21st European Conference on Few-Body Problems in
Physics, Salamanca, Spain, 30 August - 3 September 201
Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Predictions of Current Models (I)
An extensive study of three-nucleon force effects in the entire phase space
of the nucleon-deuteron breakup process, for energies from above the deuteron
breakup threshold up to 200 MeV, has been performed. 3N Faddeev equations have
been solved rigorously using the modern high precision nucleon-nucleon
potentials AV18, CD Bonn, Nijm I, II and Nijm 93, and also adding 3N forces. We
compare predictions for cross sections and various polarization observables
when NN forces are used alone or when the two pion-exchange Tucson-Melbourne
3NF was combined with each of them. In addition AV18 was combined with the
Urbana IX 3NF and CD Bonn with the TM' 3NF, which is a modified version of the
TM 3NF, more consistent with chiral symmetry. Large but generally model
dependent 3NF effects have been found in certain breakup configurations,
especially at the higher energies, both for cross sections and spin
observables. These results demonstrate the usefulness of the kinematically
complete breakup reaction in testing the proper structure of 3N forces.Comment: 42 pages, 20 ps figures, 2 gif figure