6 research outputs found

    Identification and Characterization of ART-27, a Novel Coactivator for the Androgen Receptor N Terminus

    No full text
    The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR(153–336), containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR(153–336) fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation

    Tools to evaluate estrogenic potency of dietary phytoestrogens: A consensus paper from the eu thematic network "Phytohealth" (QLKI-2002-2453)

    No full text
    Phytoestrogens are naturally occurring plantderived polyphenols with estrogenic potency. They are ubiquitous in diet and therefore, generally consumed. Among Europeans, the diet is rich in multiple putative phytoestrogens including flavonoids, tannins, stilbenoids, and lignans. These compounds have been suggested to provide beneficial effects on multiple menopause-related conditions as well as on development of hormone-dependent cancers, which has increased the interest in products and foods with high phytoestrogen content. However, phytoestrogens may as well have adverse estrogenicity related effects similar to any estrogen. Therefore, the assessment of estrogenic potency of dietary compounds is of critical importance. Due to the complex nature of estrogenicity, no single comprehensive test approach is available. Instead, several in vitro and in vivo assays are applied to evaluate estrogenic potency. In vitro estrogen receptor (ER) binding assays provide information on the ability of the compound to I) interact with ERs, II) bind to estrogen responsive element on promoter of the target gene as ligand-ER complex, and III) interact between the co-activator and ERs in ligand-dependent manner. In addition, transactivation assays in cells screen for ligand-induced ERmediated gene activation. Biochemical in vitro analysis can be used to test for possible effects on protein activities and E-screen assays to measure (anti)proliferative response in estrogen responsive cells. However, for assessment of estrogenicity in organs and tissues, in vivo approaches are essential. In females, the uterotrophic assay is applicable for testing ERa agonistic and antagonistic dietary compounds in immature or adult ovariectomized animals. In addition, mammary gland targeted estrogenicity can be detected as stimulated ductal elongation and altered formation of terminal end buds in immature or peripubertal animals. In males, Hershberger assay in peri-pubertal castrated rats can be used to detect (anti)androgenic/ (anti)estrogenic responses in accessory sex glands and other hormone regulated tissues. In addition to these short-term assays, sub-acute and chronic reproductive toxicity assays as well as two-generation studies can be applied for phytoestrogens to confirm their safety in long-term use. For reliable assessment of estrogenicity of dietary phytoestrogens in vivo, special emphasis should be focused on selection of the basal diet, route and doses of administration, and possible metabolic differences between the species used and humans. In conclusion, further development and standardization of the estrogenicity test methods are needed for better interpretation of both the potential benefits and risks of increasing consumption of phytoestrogens from diets and supplements

    Multi-site therapeutic modalities for inflammatory bowel diseases — mechanisms of action

    No full text

    2D and 3D finite element meshing and remeshing

    No full text
    corecore