6 research outputs found

    Simulation for training in sinus floor elevation : new surgical bench model

    Get PDF
    Objectives: to describe a bench model (workshop of abilities) for sinus floor elevation (SFE) training that simulates the surgical environment and to assess its effectiveness in terms of trainees? perception. Study design: thirty-six randomly selected postgraduate students entered this cross-sectional pilot study and asked to fill in an anonymous, self-applied, 12-item questionnaire about a SFE workshop that included a study guide containing the workshop?s details, supervised practice on a simulated surgical environment, and assessment by means of specific check-lists. Results: Thirtiy-six fresh sheep heads were prepared to allow access to the buccal vestible. Using the facial tuber, third premolar and a 3D-CT study as landmarks for trepanation, the sinus membrane was lifted, the space filled with ceramic material and closed with a resorbable membrane. The participants agreed on their ability to perform SFE in a simulated situation (median score= 4.5; range 2-5) and felt capable to teach the technique to other clinicians or to undertake the procedure for a patient under supervision of an expert surgeon (median= 4; range 1-5 ). There were no differences on their perceived ability to undertake the technique on a model or on a real patient under supervision of an expert surgeon (p=0.36). Conclusions: Clinical abilities workshops for SFE teaching are an essential educational tool but supervised clinical practice should always precede autonomous SFE on real patients. Simulation procedures (workshop of abilities) are perceived by the partakers as useful for the surgical practice. However, more studies are needed to validate the procedure and to address cognitive and communication skills, that are clearly integral parts of surgical performance

    Trust and vulnerability in open source software

    No full text

    An XML-Based Language to Support Performance and Reliability Modeling and Analysis in Software Architectures

    No full text
    Abstract. In recent years, the focus of software development has pro-gressively shifted upward, in the direction of the abstract level of ar-chitecture specification. However, while the functional properties of the systems have been extensively dealt with in the literature, relatively less attention has been given until recently to the specification and analysis at the architectural level of quality attributes such as performance and reliability. The contribution of this paper is twofold: first we discuss the type of information that should be provided at the architectural level in order to successfully address the problem of performance and reliability modeling and analysis of software systems; based on this discussion, we define an extension of the xADL architectural language that enables the support for stochastic modeling and analysis of performance and relia-bility in software architectures.

    Perifoveale Mikrozirkulation bei Patienten mit arterieller Hypertonie : eine prospektive Studie

    No full text
    A crucial issue in the design of Component-Based (CB) applications is the ability to early guarantee that the system under development will satisfy its Quality of Service requirements. In particular, we need rigorous and easy-touse techniques for predicting and analyzing the performance of the assembly based on the properties of the constituent components. To this purpose, we propose the CB-SPE framework: a compositional methodology for CB Software Performance Engineering (SPE) and its supporting tool. CB-SPE is based on, and adapts to a CB paradigm, the concepts and steps of the well-known SPE technology, using for input modeling the standard RT-UML PA profile. The methodology is compositional: it is first applied by the component developer at the component layer, achieving a parametric performance evaluation of the components in isolation; then, at the application layer, the system assembler is provided with a step-wise procedure for predicting the performance of the assembled components on the actual platform. We have developed the CB-SPE tool reusing as much as possible existing free tools. In this paper we present the realized framework, together with a simple application example
    corecore