3,277 research outputs found

    Duality and Effective Conductivity of Two-dimensional Two-phase Systems

    Full text link
    The possible functional forms of the effective conductivity sigma_{eff} of the randomly inhomogeneous two-phase system at arbitrary values of concentrations are discussed. A new functional equation, generalizing the duality relation, is deduced for systems with a finite maximal characteristical scale of the inhomogeneties and its solution is found. A hierarchical method of the construction of the model random inhomogeneous medium is proposed and one such simple model is constructed. Its effective conductivity at arbitrary phase concentrations is found in mean field like approximation. The derived formulas for the effective conductivity are different and also (1) satisfy all necessary inequalities and symmetries, including a dual symmetry; (2) reproduce the known formulas for sigma_{eff} in weakly inhomogeneous case. It means that in general sigma_{eff} of the two-phase randomly inhomogeneous systems may be a nonuniversal function and can depend on some details of the structure of the randomly inhomogeneous regions. The percolation limit is briefly discussed.Comment: 16 pages, latex-2e, 4 figures (3 eps-files added), small correction

    Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes

    Get PDF
    An improved method is given for the computation of the stress-energy tensor of a quantized scalar field using adiabatic regularization. The method works for fields with arbitrary mass and curvature coupling in Robertson-Walker spacetimes and is particularly useful for spacetimes with compact spatial sections. For massless fields it yields an analytic approximation for the stress-energy tensor that is similar in nature to those obtained previously for massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure

    Diethylstilbestrol induces oxidative DNA damage, resulting in apoptosis of spermatogonial stem cells in vitro

    Get PDF
    YesThe spermatogonial stem cells (SSCs) are the only germline stem cells in adults that are responsible for the transmission of genetic information from mammals to the next generation. SSCs play a very important role in the maintenance of progression of spermatogenesis and help provide an understanding of the reproductive biology of future gametes and a strategy for diagnosis and treatment of infertility and male reproductive toxicity. Androgens/oestrogens are very important for the suitable maintenance of male germ cells. There is also evidence confirming the damaging effects of oestrogen-like compounds on male reproductive health. We investigated the effects in vitro, of diethylstilbestrol (DES) on mouse spermatogonial stem cells separated using Staput unit-gravity velocity sedimentation, evaluating any DNA damage using the Comet assay and apoptotic cells in the TUNEL assay. Immunocytochemistry assays showed that the purity of isolated mouse spermatogonial cells was 90%, and the viability of these isolated cells was over 96%. Intracellular superoxide anion production (O2−) in SSCs was detected using p-Nitro Blue Tetrazolium (NBT) assay. The viability of cells after DES treatment was examined in the CCK8 (cell counting kit-8) cytotoxicity assay. The results showed that DES-induced DNA damage causes an increase in intracellular superoxide anions which are reduced by the flavonoid, quercetin. Investigating the molecular mechanisms and biology of SSCs provides a better understanding of spermatogonial stem cell regulation in the testis

    In vitro responses to known in vivo genotoxic agents in mouse germ cells

    Get PDF
    YesGenotoxic compounds have induced DNA damage in male germ cells and have been associated with adverse clinical outcomes including enhanced risks for maternal, paternal and offspring health. DNA strand breaks represent a great threat to the genomic integrity of germ cells. Such integrity is essential to maintain spermatogenesis and prevent reproduction failure. The Comet assay results revealed that the incubation of isolated germ cells with n-ethyl-n-nitrosourea (ENU), 6-mercaptopurine (6-MP) and methyl methanesulphonate (MMS) led to increase in length of Olive tail moment and % tail DNA when compared with the untreated control cells and these effects were concentration-dependent. All compounds were significantly genotoxic in cultured germ cells. Exposure of isolated germ cells to ENU produced the highest concentration-related increase in both DNA damage and gene expression changes in spermatogonia. Spermatocytes were most sensitive to 6-MP, with DNA damage and gene expression changes while spermatids were particularly susceptible to MMS. Real-time PCR results showed that the mRNA level expression of p53 increased and bcl-2 decreased significantly with the increasing ENU, 6-MP and MMS concentrations in spermatogonia, spermatocytes and spermatids respectively for 24 hr. Both are gene targets for DNA damage response and apoptosis. These observations may help explain the cell alterations caused by ENU, 6-MP and MMS in spermatogonia, spermatocytes and spermatids. Taken together, ENU, 6-MP and MMS induced DNA damage and decreased apoptosis associated gene expression in the germ cells in vitro.Libyan Governmen

    Germ Cell Responses to Doxorubicin Exposure in Vitro

    Get PDF
    YesAnthracyclines such as doxorubicin (Dox), widely used to treat various types of tumours, may result in induced testicular toxicity and oxidative stress. The present investigation was designed to determine whether exposure of isolated and purified mouse germ cells to Dox induces DNA damage in the form of strand breaks (presumably) resulting in apoptosis and to investigate the relative sensitivity of specific cell types. DNA damage was assessed using the Comet assay and the presence of apoptosis was determined by TUNEL assay. Isolated mouse germ cells were treated with different concentrations (0.05, 0.5 and 1 mM, respectively) of Dox, and fixed 1 h after treatment. The incidences of both DNA damage shown by single cell gel-electrophoresis and of apoptosis increased significantly in each specific cell type in a concentration-dependent manner. The DNA damage and apoptosis incidences gradually increased with concentration from 0.05 to 1 mM with Dox. Our results indicate that apoptosis plays a vital role in the induction of germ cell phase-specific toxicity caused by Dox with pre-meiotically and meiotically dividing spermatogonia and spermatocytes respectively as highly susceptible target cells.Higher Education Funding Council for England (HEFCE

    Silver nanoparticle-mediated cellular responses in isolated primary Sertoli cells in vitro

    Get PDF
    YesThe present study explored the mechanism of cytotoxic and genotoxic effects of AgNPs on a primary culture of mouse Sertoli cells in vitro. To understand the possible molecular mechanisms of testicular lesions following exposure to AgNPs, isolated Sertoli cells were exposed to 5, 10, or 15 ÎŒg/ml. DNA damage in the Comet assay and apoptosis in the TUNEL assay were evaluated. The mRNA expression of p53 and bcl-2 genes and their proteins involved in apoptosis was also investigated. The antioxidant status of treated Sertoli cells was determined by measuring superoxide dismutase (SOD-1), catalase (CAT), and glutathione peroxidase (GPX-1) and superoxide dismutase (SOD-1) using quantitative polymerase chain reaction (qPCR)qPCR. The superoxide anions were detected using the nitroblue tetrazolium (NBT) reduction assay. Results indicated that AgNP exposure causes increased oxidative stress levels. The activation of p53, repression of bcl-2 and reduction of endogenous antioxidant enzymes were also involved in these mechanistic pathways, leading to reduced cell numbers and cell detachment.The Sponsorship of the Libyan Government of a PhD studentship to Khaled Haba

    Quasi-1D dynamics and nematic phases in the 2D Emery model

    Full text link
    We consider the Emery model of a Cu-O plane of the high temperature superconductors. We show that in a strong-coupling limit, with strong Coulomb repulsions between electrons on nearest-neighbor O sites, the electron-dynamics is strictly one dimensional, and consequently a number of asymptotically exact results can be obtained concerning the electronic structure. In particular, we show that a nematic phase, which spontaneously breaks the point- group symmetry of the square lattice, is stable at low enough temperatures and strong enough coupling.Comment: 8 pages, 5 eps figures; revised manuscript with more detailed discussions; two new figures and three edited figuresedited figures; 14 references; new appendix with a detailed proof of the one-dimensional dynamics of the system in the strong coupling limi

    Condensate fluctuations of a trapped, ideal Bose gas

    Get PDF
    For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the ground state occupation becomes macroscopic, the condensate number fluctuations remain micrscopic. However, this is the only significant aspect in which the grand canonical description differs from canonical or microcanonical in the thermodynamic limit. General arguments and estimates including some vanishingly small quantities are compared to explicit, fixed-number calculations for 10^2 to 10^6 particles.Comment: 16 pages (REVTeX) plus 4 figures (ps), revision includes brief comparison of repulsive-interaction vs. fixed-N fluctuation damping. To be published in Phys. Rev.
    • 

    corecore