27 research outputs found

    Revisiting the Equivalence Problem for Finite Multitape Automata

    Full text link
    The decidability of determining equivalence of deterministic multitape automata (or transducers) was a longstanding open problem until it was resolved by Harju and Karhum\"{a}ki in the early 1990s. Their proof of decidability yields a co_NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability, which follows the basic strategy of Harju and Karhumaki but replaces their use of group theory with results on matrix algebras. From our proof we obtain a simple randomised algorithm for deciding language equivalence of deterministic multitape automata and, more generally, multiplicity equivalence of nondeterministic multitape automata. The algorithm involves only matrix exponentiation and runs in polynomial time for each fixed number of tapes. If the two input automata are inequivalent then the algorithm outputs a word on which they differ

    Polynomial identifies and Azumaya algebras

    No full text

    PI-algebras and their cocharacters

    No full text

    Zero sums of idempotents in Banach algebras

    No full text
    corecore