53 research outputs found

    Worldline Monte Carlo for fermion models at large N_f

    Full text link
    Strongly-coupled fermionic systems can support a variety of low-energy phenomena, giving rise to collective condensation, symmetry breaking and a rich phase structure. We explore the potential of worldline Monte Carlo methods for analyzing the effective action of fermionic systems at large flavor number N_f, using the Gross-Neveu model as an example. Since the worldline Monte Carlo approach does not require a discretized spacetime, fermion doubling problems are absent, and chiral symmetry can manifestly be maintained. As a particular advantage, fluctuations in general inhomogeneous condensates can conveniently be dealt with analytically or numerically, while the renormalization can always be uniquely performed analytically. We also critically examine the limitations of a straightforward implementation of the algorithms, identifying potential convergence problems in the presence of fermionic zero modes as well as in the high-density region.Comment: 40 pages, 13 figure

    Aging and Immortality in a Cell Proliferation Model

    Full text link
    We investigate a model of cell division in which the length of telomeres within the cell regulate their proliferative potential. At each cell division the ends of linear chromosomes change and a cell becomes senescent when one or more of its telomeres become shorter than a critical length. In addition to this systematic shortening, exchange of telomere DNA between the two daughter cells can occur at each cell division. We map this telomere dynamics onto a biased branching diffusion process with an absorbing boundary condition whenever any telomere reaches the critical length. As the relative effects of telomere shortening and cell division are varied, there is a phase transition between finite lifetime and infinite proliferation of the cell population. Using simple first-passage ideas, we quantify the nature of this transition.Comment: 6 pages, 1 figure, 2-column revtex4 format; version 2: final published form; contains various improvements in response to referee comment

    Deformation of Curved BPS Domain Walls and Supersymmetric Flows on 2d K\"ahler-Ricci Soliton

    Full text link
    We consider some aspects of the curved BPS domain walls and their supersymmetric Lorentz invariant vacua of the four dimensional N=1 supergravity coupled to a chiral multiplet. In particular, the scalar manifold can be viewed as a two dimensional K\"ahler-Ricci soliton generating a one-parameter family of K\"ahler manifolds evolved with respect to a real parameter, τ\tau. This implies that all quantities describing the walls and their vacua indeed evolve with respect to τ\tau. Then, the analysis on the eigenvalues of the first order expansion of BPS equations shows that in general the vacua related to the field theory on a curved background do not always exist. In order to verify their existence in the ultraviolet or infrared regions one has to perform the renormalization group analysis. Finally, we discuss in detail a simple model with a linear superpotential and the K\"ahler-Ricci soliton considered as the Rosenau solution.Comment: 19 pages, no figures. Typos corrected. Published versio

    Supergravity Solution of Intersecting Branes and AdS/CFT with Flavor

    Full text link
    We construct the supergravity solution for fully localized D2/D6 intersection. The near horizon limit of this solution is the supergravity dual of supersymmetric Yang-Mills theory in 2+1 dimensions with flavor. We use this solution to formulate mirror symmetry of 2+1 dimensional gauge theories in the language of AdS/CFT correspondence. We also construct the supergravity dual of a non-commutative gauge theory with fundamental matter.Comment: 17 Pages, 2 figures, references added. Minor corrections to eqs (5.3) and (5.4

    On the Particle Definition in the presence of Black Holes

    Full text link
    A canonical particle definition via the diagonalisation of the Hamiltonian for a quantum field theory in specific curved space-times is presented. Within the provided approach radial ingoing or outgoing Minkowski particles do not exist. An application of this formalism to the Rindler metric recovers the well-known Unruh effect. For the situation of a black hole the Hamiltonian splits up into two independent parts accounting for the interior and the exterior domain, respectively. It turns out that a reasonable particle definition may be accomplished for the outside region only. The Hamiltonian of the field inside the black hole is unbounded from above and below and hence possesses no ground state. The corresponding equation of motion displays a linear global instability. Possible consequences of this instability are discussed and its relations to the sonic analogues of black holes are addressed. PACS-numbers: 04.70.Dy, 04.62.+v, 10.10.Ef, 03.65.Db.Comment: 44 pages, LaTeX, no figures, accepted for publication in Phys. Rev.

    Universal Features of Holographic Anomalies

    Full text link
    We study the mechanism by which gravitational actions reproduce the trace anomalies of the holographically related conformal field theories. Two universal features emerge: a) the ratios of type B trace anomalies in any even dimension are independent of the gravitational action, being uniquely determined by the underlying algebraic structure b) the normalization of the type A and the overall normalization of the type B anomalies are given by action dependent expressions with the dimension dependence completely fixed.Comment: 17 pages, harvma

    Real time response on dS_3: the Topological AdS Black Hole and the Bubble

    Full text link
    We study real time correlators in strongly coupled N=4 supersymmetric Yang-Mills theory on dS_3 x S^1, with antiperiodic boundary conditions for fermions on the circle. When the circle radius is larger than a critical value, the dual geometry is the so-called "topological AdS_5 black hole". Applying the Son- Starinets recipe in this background we compute retarded glueball propagators which exhibit an infinite set of poles yielding the quasinormal frequencies of the topological black hole. The imaginary parts of the propagators exhibit thermal effects associated with the Gibbons-Hawking temperature due to the cosmological horizon of the de Sitter boundary. We also obtain R-current correlators and find that after accounting for a small subtlety, the Son-Starinets prescription yields the retarded Green's functions. The correlators do not display diffusive behaviour at late times. Below the critical value of the circle radius, the topological black hole decays to the AdS_5 "bubble of nothing". Using a high frequency WKB approximation, we show that glueball correlators in this phase exhibit poles on the real axis. The tunnelling from the black hole to the bubble is interpreted as a hadronization transition.Comment: 52 pages, 11 figures, typos corrected, references adde

    Geometry of Schroedinger Space-Times, Global Coordinates, and Harmonic Trapping

    Full text link
    We study various geometrical aspects of Schroedinger space-times with dynamical exponent z>1 and compare them with the properties of AdS (z=1). The Schroedinger metrics are singular for 1<z<2 while the usual Poincare coordinates are incomplete for z \geq 2. For z=2 we obtain a global coordinate system and we explain the relations among its geodesic completeness, the choice of global time, and the harmonic trapping of non-relativistic CFTs. For z>2, we show that the Schroedinger space-times admit no global timelike Killing vectors.Comment: 15 pages, v2: some comments and references adde

    Vacuum effects in an asymptotically uniformly accelerated frame with a constant magnetic field

    Get PDF
    In the present article we solve the Dirac-Pauli and Klein Gordon equations in an asymptotically uniformly accelerated frame when a constant magnetic field is present. We compute, via the Bogoliubov coefficients, the density of scalar and spin 1/2 particles created. We discuss the role played by the magnetic field and the thermal character of the spectrum.Comment: 17 pages. RevTe

    Soliton Lattices in the Incommensurate Spin-Peierls Phase: Local Distortions and Magnetizations

    Full text link
    It is shown that nonadiabatic fluctuations of the soliton lattice in the spin-Peierls system CuGeO_3 lead to an important reduction of the NMR line widths. These fluctuations are the zero-point motion of the massless phasonic excitations. Furthermore, we show that the discrepancy of X-ray and NMR soliton widths can be understood as the difference between a distortive and a magnetic width. Their ratio is controlled by the frustration of the spin system. By this work, theoretical and experimental results can be reconciled in two important points.Comment: 9 pages, 5 figures included, Revtex submitted to Physical Review
    corecore