8,359 research outputs found

    Topological Gauge Structure and Phase Diagram for Weakly Doped Antiferromagnets

    Full text link
    We show that the topological gauge structure in the phase string theory of the {\rm t-J} model gives rise to a global phase diagram of antiferromagnetic (AF) and superconducting (SC) phases in a weakly doped regime. Dual confinement and deconfinement of holons and spinons play essential roles here, with a quantum critical point at a doping concentration xc≃0.043x_c\simeq 0.043. The complex experimental phase diagram at low doping is well described within such a framework.Comment: 4 pages, 2 figures, modified version, to appear in Phys. Rev. Let

    Optical spectroscopy study of Nd(O,F)BiS2 single crystals

    Full text link
    We present an optical spectroscopy study on F-substituted NdOBiS2_2 superconducting single crystals grown using KCl/LiCl flux method. The measurement reveals a simple metallic response with a relatively low screened plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV, which is much smaller than the value expected from the first-principles calculations for an electron doping level of x=0.5, but very close to the value based on a doping level of 7%\% of itinerant electrons per Bi site as determined by ARPES experiment. The energy scales of the interband transitions are also well reproduced by the first-principles calculations. The results suggest an absence of correlation effect in the compound, which essentially rules out the exotic pairing mechanism for superconductivity or scenario based on the strong electronic correlation effect. The study also reveals that the system is far from a CDW instability as being widely discussed for a doping level of x=0.5.Comment: 5 pages, 5 figure

    Mean-Field Description of Phase String Effect in the t−Jt-J Model

    Full text link
    A mean-field treatment of the phase string effect in the t−Jt-J model is presented. Such a theory is able to unite the antiferromagnetic (AF) phase at half-filling and metallic phase at finite doping within a single theoretical framework. We find that the low-temperature occurrence of the AF long range ordering (AFLRO) at half-filling and superconducting condensation in metallic phase are all due to Bose condensations of spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-bond (RVB) pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This theory also allows an underdoped metallic regime where the Bose condensation of spinons can still exist. Even though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with short-ranged spin ordering. We discuss some characteristic experimental consequences for those different metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.Comment: 18 pages, five figure

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the t−Jt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Get PDF
    This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France). Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC ) to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3106 cell m L-1) in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90 % in the fraction < 1 mm). Spatial variations in organic carbon and nitrate content in groundwater at the site studied are correlated with exchanges between the groundwater and the river, from the upstream to the downstream part of the meander. Total bacterial densities, nitrate and decressing organic carbon concentrations follow the same pattern. These results suggest that, in this kind of riparian wetland, nitrate from alluvial groundwater influenced by agricultural practices may be denitrified by bacteria in the presence of organic carbon from river surface water

    Entanglement renormalization of anisotropic XY model

    Full text link
    The renormalization group flows of the one-dimensional anisotropic XY model and quantum Ising model under a transverse field are obtained by different multiscale entanglement renormalization ansatz schemes. It is shown that the optimized disentangler removes the short-range entanglement by rotating the system in the parameter space spanned by the anisotropy and the magnetic field. It is understood from the study that the disentangler reduces the entanglement by mapping the system to another one in the same universality class but with smaller short range entanglement. The phase boundary and corresponding critical exponents are calculated using different schemes with different block sizes, look-ahead steps and truncation dimensions. It is shown that larger truncation dimension leads to more accurate results and that using larger block size or look-ahead step improve the overall calculation consistency.Comment: 5 pages, 3 figure

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    Evolution of structural and electronic properties of highly mismatched InSb films

    Full text link
    We have investigated the evolution of structural and electronic properties of highly mismatched InSb films, with thicknesses ranging from 0.1 to 1.5 μm. Atomic force microscopy, cross-sectional transmission electron microscopy, and high-resolution x-ray diffraction show that the 0.1 μm films are nearly fully relaxed and consist of partially coalesced islands, which apparently contain threading dislocations at their boundaries. As the film thickness increases beyond 0.2 μm, the island coalescence is complete and the residual strain is reduced. Although the epilayers have relaxed equally in the 〈110〉 in-plane directions, the epilayer rotation about an in-plane axis (epilayer tilt) is not equal in both 〈110〉 in-plane directions. Interestingly, the island-like surface features tend to be preferentially elongated along the axis of epilayer tilt. Furthermore, epilayer tilt which increases the substrate offcut (reverse tilt) is evident in the [110] direction. High-resolution transmission electron microscopy indicates that both pure-edge and 60° misfit dislocations contribute to the relaxation of strain. In addition, as the film thickness increases, the threading dislocation density decreases, while the corresponding room-temperature electron mobility increases. The other structural features, including the residual strain, and the surface and interface roughness, do not appear to impact the electron mobility in these InSb films. Together, these results suggest that free-carrier scattering from the threading dislocations is the primary room-temperature mobility-limiting mechanism in highly mismatched InSb films. Finally, we show quantitatively that free-carrier scattering from the lattice dilation associated with threading dislocations, rather than scattering from a depletion potential surrounding the dislocations, is the dominant factor limiting the electron mobility. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70332/2/JAPIAU-88-11-6276-1.pd
    • …
    corecore