10,294 research outputs found

    Study of gossamer superconductivity and antiferromagnetism in the t-J-U model

    Full text link
    The d-wave superconductivity (dSC) and antiferromagnetism are analytically studied in a renormalized mean field theory for a two dimensional t-J model plus an on-site repulsive Hubbard interaction UU. The purpose of introducing the UU term is to partially impose the no double occupancy constraint by employing the Gutzwiller approximation. The phase diagrams as functions of doping δ\delta and UU are studied. Using the standard value of t/J=3.0t/J=3.0 and in the large UU limit, we show that the antiferromagnetic (AF) order emerges and coexists with the dSC in the underdoped region below the doping δ∟0.1\delta\sim0.1. The dSC order parameter increases from zero as the doping increases and reaches a maximum near the optimal doping δ∟0.15\delta\sim0.15. In the small UU limit, only the dSC order survives while the AF order disappears. As UU increased to a critical value, the AF order shows up and coexists with the dSC in the underdoped regime. At half filing, the system is in the dSC state for small UU and becomes an AF insulator for large UU. Within the present mean field approach, We show that the ground state energy of the coexistent state is always lower than that of the pure dSC state.Comment: 7 pages, 8 figure

    Cascades of Dynamical Transitions in an Adaptive Population

    Get PDF
    In an adaptive population which models financial markets and distributed control, we consider how the dynamics depends on the diversity of the agents' initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. This change in the environment results in dynamical transitions from vanishing to non-vanishing step sizes. When the diversity decreases further, we find a cascade of dynamical transitions for the different signal dimensions, supported by good agreement between simulations and theory. Besides, the signal of the largest step size at the steady state is likely to be the initial signal.Comment: 4 pages, 8 figure

    Fluctuations in the transmission properties of a quantum dot with interface roughness and impurities

    Get PDF
    We examine statistical fluctuations in the transmission properties of quantum dots with interface roughness and neutral impurities. For this purpose we employ a supercell model of quantum transport capable of simulating potential variations in three dimensions. We find that sample to sample variations in interface roughness in a quantum dot waveguide can lead to substantial fluctuations in the n=1 transmission resonance position, width and maximum. We also find that a strongly attractive impurity near the centre of a quantum dot can reduce these fluctuations. Nevertheless, the presence of more than a single impurity can give rise to a complex resonance structure that varies with impurity configuration

    Fermi surface evolution in the antiferromagnetic state for the electron-doped t-t'-t''-J model

    Get PDF
    By use of the slave-boson mean-field approach, we have studied the electron-doped t-t'-t''-J model in the antiferromagnetic (AF) state. It is found that at low doping the Fermi surface (FS) pockets appear around (±π,0)(\pm\pi,0) and (0,±π)(0,\pm\pi), and upon increasing doping the other ones will form around (±π2,±π2)(\pm{\pi\over 2},\pm{\pi\over 2}). The evolution of the FS with doping as well as the calculated spectral weight are consistent with the experimental results.Comment: Fig. 4 is updated, to appear in Phys. Rev.

    Detection of genuinely entangled and non-separable nn-partite quantum states

    Full text link
    We investigate the detection of entanglement in nn-partite quantum states. We obtain practical separability criteria to identify genuinely entangled and non-separable mixed quantum states. No numerical optimization or eigenvalue evaluation is needed, and our criteria can be evaluated by simple computations involving components of the density matrix. We provide examples in which our criteria perform better than all known separability criteria. Specifically, we are able to detect genuine nn-partite entanglement which has previously not been identified. In addition, our criteria can be used in today's experiment.Comment: 8 pages, one figur

    The temperature dependence of the local tunnelling conductance in cuprate superconductors with competing AF order

    Full text link
    Based on the t−t′−U−Vt-t'-U-V model with proper chosen parameters for describing the cuprate superconductors, it is found that near the optimal doping at low temperature (TT), only the pure d-wave superconductivity (ddSC) prevails and the antiferromagnetic (AF) order is completely suppressed. At higher TT, the AF order with stripe modulation and the accompanying charge order may emerge, and they could exist above the ddSC transition temperature. We calculate the local differential tunnelling conductance (LDTC) from the local density of states (LDOS) and show that their energy variations are rather different from each other as TT increases. Although the calculated modulation periodicity in the LDTC/LDOS and bias energy dependence of the Fourier amplitude of LDTC in the "pseudogap" region are in good agreement with the recent STM experiment [Vershinin etal.et al., Science {\bf 303}, 1995 (2004)], we point out that some of the energy dependent features in the LDTC do not represent the intrinsic characteristics of the sample

    Spin dynamics in the antiferromagnetic phase for electron-doped cuprate superconductors

    Full text link
    Based on the tt-t′t'-t′′t''-JJ model we have calculated the dynamical spin susceptibilities in the antiferromagnetic (AF) phase for electron-doped cuprates, by use of the slave-boson mean-field theory and random phase approximation. Various results for the susceptibilities versus energy and momentum have been shown at different dopings. At low energy, except the collective spin-wave mode around (π,π)(\pi,\pi) and 0, we have primarily observed that new resonance peaks will appear around (0.3π,0.7π)(0.3\pi,0.7\pi) and equivalent points with increasing doping, which are due to the particle-hole excitations between the two AF bands. The peaks are pronounced in the transverse susceptibility but not in the longitudinal one. These features are predicted for neutron scattering measurements.Comment: 5 pages, 3 figures, published version with minor change
    • …
    corecore