34,110 research outputs found

    Streaks to Rings to Vortex Grids: Generic Patterns in Transient Convective Spin-Up

    Full text link
    We observe the transient formation of a ringed pattern state during spin-up of an evaporating fluid on a time scale of order a few Ekman spin-up times. The ringed state is probed using infrared thermometry and particle image velocimetry and it is demonstrated to be a consequence of the transient balance between Coriolis and viscous forces which dominate inertia, each of which are extracted from the measured velocity field. The breakdown of the ringed state is quantified in terms of the antiphasing of these force components which drives a Kelvin-Helmholtz instability and we show that the resulting vortex grid spacing scales with the ring wavelength. This is the fundamental route to quasi-two dimensional turbulent vortex flow and thus may have implications in astrophysics and geophysics wherein rotating convection is ubiquitous. sics.Comment: 4 pages, 5 figure

    Study of interacting electrons in graphene under the renormalized-ring-diagram approximation

    Full text link
    Using the tight-binding model with long-range Coulomb interactions between electrons, we study some of the electronic properties of graphene. The Coulomb interactions are treated with the renormalized-ring-diagram approximation. By self-consistently solving the integral equations for the Green function, we calculate the spectral density. The obtained result is in agreement with experimental observation. In addition, we also compute the density of states, the distribution functions, and the ground-state energy. Within the present approximation, we find that the imaginary part of the self-energy fixed at the Fermi momentum varies as quadratic in energy close to the chemical potential, regardless the system is doped or not. This result appears to indicate that the electrons in graphene always behave like a moderately correlated Fermi liquid.Comment: 11 pages, 13 figure

    Electronic structure induced reconstruction and magnetic ordering at the LaAlO3∣_3|SrTiO3_3 interface

    Get PDF
    Using local density approximation (LDA) calculations we predict GdFeO3_3-like rotation of TiO6_6 octahedra at the nn-type interface between LaAlO3_3 and SrTiO3_3. The narrowing of the Ti dd bandwidth which results means that for very modest values of UU, LDA+U+U calculations predict charge and spin ordering at the interface. Recent experimental evidence for magnetic interface ordering may be understood in terms of the close proximity of an antiferromagnetic insulating ground state to a ferromagnetic metallic excited state

    Beam energy dependence of Hanbury-Brown-Twiss radii from a blast-wave model

    Get PDF
    The beam energy dependence of correlation lengths (the Hanbury-Brown-Twiss radii) is calculated by using a blast-wave model and the results are comparable with those from RHIC-STAR beam energy scan data as well as the LHC-ALICE measurements. A set of parameter for the blast-wave model as a function of beam energy under study are obtained by fit to the HBT radii at each energy point. The transverse momentum dependence of HBT radii is presented with the extracted parameters for Au + Au collision at sNN=\sqrt{s_{NN}} = 200 GeV and for Pb+Pb collisions at 2.76 TeV. From our study one can learn that particle emission duration can not be ignored while calculating the HBT radii with the same parameters. And tuning kinetic freeze-out temperature in a range will result in system lifetime changing in the reverse direction as it is found in RHIC-STAR experiment measurements.Comment: 9 pages, 9 figure

    Flavor Evolution of the Neutronization Neutrino Burst from an O-Ne-Mg Core-Collapse Supernova

    Full text link
    We present results of 3-neutrino flavor evolution simulations for the neutronization burst from an O-Ne-Mg core-collapse supernova. We find that nonlinear neutrino self-coupling engineers a single spectral feature of stepwise conversion in the inverted neutrino mass hierarchy case and in the normal mass hierarchy case, a superposition of two such features corresponding to the vacuum neutrino mass-squared differences associated with solar and atmospheric neutrino oscillations. These neutrino spectral features offer a unique potential probe of the conditions in the supernova environment and may allow us to distinguish between O-Ne-Mg and Fe core-collapse supernovae.Comment: 4 pages, 2 figures. Version accepted by PR

    Interactions in Quasicrystals

    Full text link
    Although the effects of interactions in solid state systems still remains a widely open subject, some limiting cases such as the three dimensional Fermi liquid or the one-dimensional Luttinger liquid are by now well understood when one is dealing with interacting electrons in {\it periodic} crystalline structures. This problem is much more fascinating when periodicity is lacking as it is the case in {\it quasicrystalline} structures. Here, we discuss the influence of the interactions in quasicrystals and show, on a controlled one-dimensional model, that they lead to anomalous transport properties, intermediate between those of an interacting electron gas in a periodic and in a disordered potential.Comment: Proceedings of the Many Body X conference (Seattle, Sept. 99); 9 pages; uses epsfi
    • …
    corecore