30,732 research outputs found
Electronic Structures of Antiperovskite Superconductor MgCNi and Related Compounds
Electronic structure of a newly discovered antiperovskite superconductor
MgCNi is investigated by using the LMTO band method. The main contribution
to the density of states (DOS) at the Fermi energy comes from Ni
3 states which are hybridized with C 2 states. The DOS at is
varied substantially by the hole or electron doping due to the very high and
narrow DOS peak located just below . We have also explored
electronic structures of C-site and Mg-site doped MgCNi systems, and
described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai,
JAPAN
Electronic structures of antiperovskite superconductors: MgXNi (X=B,C,N)
We have investigated electronic structures of a newly discovered
antiperovskite superconductor MgCNi and related compounds MgBNi and
MgNNi. In MgCNi, a peak of very narrow and high density of states is
located just below , which corresponds to the antibonding
state of Ni-3d and C- but with the predominant Ni-3d character. The
prominent nesting feature is observed in the -centered electron Fermi
surface of an octahedron-cage-like shape that originates from the 19th band.
The estimated superconducting parameters based on the simple rigid-ion
approximation are in reasonable agreement with experiment, suggesting that the
superconductivity in MgCNi is described well by the conventional phonon
mechanism.Comment: 5 pages, 5 figure
Electronic structure of metallic antiperovskite compound GaCMn
We have investigated electronic structures of antiperovskite GaCMn and
related Mn compounds SnCMn, ZnCMn, and ZnNMn. In the paramagnetic
state of GaCMn, the Fermi surface nesting feature along the
direction is observed, which induces the antiferromagnetic (AFM) spin ordering
with the nesting vector {\bf Q} . Calculated
susceptibilities confirm the nesting scenario for GaCMn and also explain
various magnetic structures of other antiperovskite compounds. Through the band
folding effect, the AFM phase of GaCMn is stabilized. Nearly equal
densities of states at the Fermi level in the ferromagnetic and AFM phases of
GaCMn indicate that two phases are competing in the ground state.Comment: 4 pages, 5 figure
Weakly Supervised Localization using Deep Feature Maps
Object localization is an important computer vision problem with a variety of
applications. The lack of large scale object-level annotations and the relative
abundance of image-level labels makes a compelling case for weak supervision in
the object localization task. Deep Convolutional Neural Networks are a class of
state-of-the-art methods for the related problem of object recognition. In this
paper, we describe a novel object localization algorithm which uses
classification networks trained on only image labels. This weakly supervised
method leverages local spatial and semantic patterns captured in the
convolutional layers of classification networks. We propose an efficient beam
search based approach to detect and localize multiple objects in images. The
proposed method significantly outperforms the state-of-the-art in standard
object localization data-sets with a 8 point increase in mAP scores
Systematic Investigation of Possibilities for New Physics Effects in b --> s Penguin Processes
Although recent experimental results in b-->s penguin process seem to be
roughly consistent with the standard model predictions, there may be still
large possibilities of new physics hiding in this processes. Therefore, here we
investigate systematically the potential new physics effects that may appear in
time-dependent CP asymmetries of B --> phi K^0, B--> eta^\prime K^0 and B-->
K^0 \pi^0 decay modes, by classifying the cases for the values of the
mixing-induced indirect CP asymmetries, S_{phi K^0}, S_{eta^\prime K^0}, S_{K^0
pi^0} which are compared to S_{J/psi K^0}. We also show that several B_s decay
modes may help to resolve the ambiguities in such an analysis. Through
combining analysis with the time-dependent CP asymmetries of B_s decay modes
such as B_s --> phi eta^\prime, B_s--> eta^\prime pi^0 and B_s --> K^0
bar{K}^0, we can determine where the new CP phases precisely come from.Comment: 17 pages, version to be published in Prog.Theor.Phy
- …