1,497 research outputs found

    Generating entangled atom-photon pairs from Bose-Einstein condensates

    Get PDF
    We propose using spontaneous Raman scattering from an optically driven Bose-Einstein condensate as a source of atom-photon pairs whose internal states are maximally entangled. Generating entanglement between a particle which is easily transmitted (the photon) and one which is easily trapped and coherently manipulated (an ultracold atom) will prove useful for a variety of quantum-information related applications. We analyze the type of entangled states generated by spontaneous Raman scattering and construct a geometry which results in maximum entanglement

    Higher-order mutual coherence of optical and matter waves

    Get PDF
    We use an operational approach to discuss ways to measure the higher-order cross-correlations between optical and matter-wave fields. We pay particular attention to the fact that atomic fields actually consist of composite particles that can easily be separated into their basic constituents by a detection process such as photoionization. In the case of bosonic fields, that we specifically consider here, this leads to the appearance in the detection signal of exchange contributions due to both the composite bosonic field and its individual fermionic constituents. We also show how time-gated counting schemes allow to isolate specific contributions to the signal, in particular involving different orderings of the Schr\"odinger and Maxwell fields.Comment: 11 pages, 2 figure

    Suppression and enhancement of impurity scattering in a Bose-Einstein condensate

    Full text link
    Impurity atoms propagating at variable velocities through a trapped Bose-Einstein condensate were produced using a stimulated Raman transition. The redistribution of momentum by collisions between the impurity atoms and the stationary condensate was observed in a time-of-flight analysis. The collisional cross section was dramatically reduced when the velocity of the impurities was reduced below the speed of sound of the condensate, in agreement with the Landau criterion for superfluidity. For large numbers of impurity atoms, we observed an enhancement of atomic collisions due to bosonic stimulation. This enhancement is analogous to optical superradiance.Comment: 4 pages, 4 figure

    Hydrodynamic behavior in expanding thermal clouds of Rb-87

    Full text link
    We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released from an elongated trap. At our highest densities the mean free path is smaller than the radial size of the cloud. After release the clouds expand anisotropically. The cloud temperature drops by as much as 30%. This is attributed to isentropic cooling during the early stages of the expansion. We present an analytical model to describe the expansion and to estimate the cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure

    Quantum Computing with Atomic Josephson Junction Arrays

    Full text link
    We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.Comment: 7 figure

    In-situ velocity imaging of ultracold atoms using slow--light

    Full text link
    The optical response of a moving medium suitably driven into a slow-light propagation regime strongly depends on its velocity. This effect can be used to devise a novel scheme for imaging ultraslow velocity fields. The scheme turns out to be particularly amenable to study in-situ the dynamics of collective and topological excitations of a trapped Bose-Einstein condensate. We illustrate the advantages of using slow-light imaging specifically for sloshing oscillations and bent vortices in a stirred condensate

    Review of rehabilitation and habilitation strategies for children and young people with homonymous visual field loss caused by cerebral vision impairment

    Get PDF
    Partial and homonymous visual field loss (HVFL) is a common consequence of post-chiasmatic injury to the primary visual pathway or injury to the primary visual cortex. Different approaches to rehabilitation have been reported for older adults with HVFL and there is evidence to support the use of compensatory training over other proposed therapies. We reviewed the literature to investigate the current state of the art of rehabilitation and habilitation strategies for children and young people with HVFL, and whether there is enough evidence to support the use of these strategies in the paediatric population. We have provided an overview of the existing literature on children and young people with HVFL, a brief overview of rehabilitation strategies for adults with HVFL, and evidence on whether these different interventions have been applied with children and young people effectively. We found that there have been very few studies to investigate these strategies with children and young people, and the quality of evidence is currently low. New research is required to evaluate which strategies are effective for children and young people with HVFL and whether new strategies need to be developed

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference
    • …
    corecore