67,824 research outputs found
Single crystal growth and physical properties of SrFe(AsP)
We report a crystal growth and physical properties of
SrFe(AsP). The single crystals for various s were
grown by a self flux method. For , reaches the maximum value of
30\,K and the electrical resistivity () shows -linear dependence.
As increases, decreases and () changes to -behavior,
indicating a standard Fermi liquid. These results suggest that a magnetic
quantum critical point exists around .Comment: 4 pages, 4 figures, accepted to Supplemental issue of the Journal of
Physical Society of Japan (JPSJ
Exotic Topological States with Raman-Induced Spin-Orbit Coupling
We propose a simple experimental scheme to realize simultaneously the
one-dimensional spin-orbit coupling and the staggered spin-flip in ultracold
pseudospin- atomic Fermi gases trapped in square optical lattices. In the
absence of interspecies interactions, the system supports gapped Chern
insulators and gapless topological semimetal states. By turning on the -wave
interactions, a rich variety of gapped and gapless inhomogeneous topological
superfluids can emerge. In particular, a gapped topological Fulde-Ferrell
superfluid, in which the chiral edge states at opposite boundaries possess the
same chirality, is predicted.Comment: 11 pages, 6 figure
Single grain (LRE)-Ba-Cu-O superconductors fabricated by top seeded melt growth in air
We have recently reported a practical processing method for the fabrication in air of large, single grain (LRE)-Ba-Cu-O [where LRE Nd, Sm, Eu and Gd] bulk superconductors that exhibit high Tc and high Jc. The process is based initially on the development of a new type of generic seed crystal that can promote effectively the epitaxial nucleation of any (RE)-Ba-Cu-O system and, secondly, by suppressing the formation of (LRE)/Ba solid solution in a controlled manner within large LRE-Ba-Cu-O grains processed in air. In this paper we investigate the degree of homogeneity of large grain Sm-Ba-Cu-O superconductors fabricated by this novel process. The technique offers a significant degree of freedom in terms of processing parameters and reproducibility in the growth of oriented single grains in air and yields bulk samples with significantly improved superconducting and field-trapping properties compared to those processed by conventional top seeded melt growth (TSMG)
Emergent Behaviors over Signed Random Networks in Dynamical Environments
We study asymptotic dynamical patterns that emerge among a set of nodes that
interact in a dynamically evolving signed random network. Node interactions
take place at random on a sequence of deterministic signed graphs. Each node
receives positive or negative recommendations from its neighbors depending on
the sign of the interaction arcs, and updates its state accordingly. Positive
recommendations follow the standard consensus update while two types of
negative recommendations, each modeling a different type of antagonistic or
malicious interaction, are considered. Nodes may weigh positive and negative
recommendations differently, and random processes are introduced to model the
time-varying attention that nodes pay to the positive and negative
recommendations. Various conditions for almost sure convergence, divergence,
and clustering of the node states are established. Some fundamental
similarities and differences are established for the two notions of negative
recommendations
Geometries and energetics of methanol–ethanol clusters: a VUV laser/time-of-flight mass spectrometry and density functional theory study
Hydrogen-bonded clusters, formed above liquid methanol (Me) and ethanol (Et) mixtures of various compositions, were entrained in a supersonic jet and probed using 118 nm vacuum ultraviolet (VUV) laser single-photon ionization/time-of-flight mass spectrometry. The spectra are dominated by protonated cluster ions, formed by ionizing hydrogen-bonded MemEtn neutrals, m = 0–4, n = 0–3, and m + n = 2–5. The structures and energetics of the neutral and ionic species were investigated using both the all-atom optimized potential for liquid state, OPLS-AA, and the density functional (DFT) calculations. The energetic factors affecting the observed cluster distributions were examined. Calculations indicate that the large change in binding energy going from trimer to tetramer can be attributed more to pair-wise interactions than to cooperativity effects
The Evolution of Beliefs over Signed Social Networks
We study the evolution of opinions (or beliefs) over a social network modeled
as a signed graph. The sign attached to an edge in this graph characterizes
whether the corresponding individuals or end nodes are friends (positive links)
or enemies (negative links). Pairs of nodes are randomly selected to interact
over time, and when two nodes interact, each of them updates its opinion based
on the opinion of the other node and the sign of the corresponding link. This
model generalizes DeGroot model to account for negative links: when two enemies
interact, their opinions go in opposite directions. We provide conditions for
convergence and divergence in expectation, in mean-square, and in almost sure
sense, and exhibit phase transition phenomena for these notions of convergence
depending on the parameters of the opinion update model and on the structure of
the underlying graph. We establish a {\it no-survivor} theorem, stating that
the difference in opinions of any two nodes diverges whenever opinions in the
network diverge as a whole. We also prove a {\it live-or-die} lemma, indicating
that almost surely, the opinions either converge to an agreement or diverge.
Finally, we extend our analysis to cases where opinions have hard lower and
upper limits. In these cases, we study when and how opinions may become
asymptotically clustered to the belief boundaries, and highlight the crucial
influence of (strong or weak) structural balance of the underlying network on
this clustering phenomenon
- …